

| Subject:         | Soil Abrasivity Testing Summary (Final Draft)                                  |
|------------------|--------------------------------------------------------------------------------|
| Project feature: | Geotechnical                                                                   |
| Prepared for:    | California Department of Water Resources (DWR) / Delta Conveyance Office (DCO) |
| Prepared by:     | Delta Conveyance Design and Construction Authority (DCA)                       |
| Copies to:       | File                                                                           |
| Date/Version:    | December 23, 2021                                                              |
| Reference no.:   | EDM_GE_CE_TMO_Soil-Abrasivity-Testing-Summary_000944_V03_FD_20211223           |

### 1. Summary

Between 2011 and 2018, Tonon USA (Tonon) performed a series of soil abrasion tests (SATs) on soil samples obtained by the DWR, to quantify the abrasivity of soils within the planned tunnel horizon. These tests were performed on samples from elevations of between -100 and -170 feet (North American Vertical Datum 1988 [NAVD88]) from project borings drilled between 2009 and 2018, as shown in Attachment 1. The results of the tests are contained in Appendix E of the *2013 Geotechnical Data Report* (DWR, 2013), Appendix E9 of the *2018 Bouldin Island Geotechnical Data Report* (DWR, 2018), and are summarized in Attachment 2. The summary of results in Attachment 2 includes a detailed review of the actual soil sample intervals used in the prior SAT testing. Where the requested soil sample intervals were available, as summarized in Table 1 of Attachment 2, they were taken as test intervals. Where these were not available, the reported intervals were used. The results of these tests indicate the soil abrasivity within the planned tunnel horizon ranges from medium to high (Jakobsen et al., 2013). The SAT classification is shown in Table 1.

| Table | 1. SA           | T Class | sifica | ition |
|-------|-----------------|---------|--------|-------|
| 10010 | <b>1</b> . 0/ ( |         |        |       |

| Category | SAT        |
|----------|------------|
| Low      | ≤ 7.0      |
| Medium   | 7.1 – 21.9 |
| High     | ≥ 22.0     |

Source: Jakobsen et al. (2013)

Notes:

Yellow shading indicates a medium SAT classification

Orange shading indicates a high SAT classification

 $\leq$  = less than or equal to

 $\geq$  = greater than or equal to

Given the importance of soil abrasivity in project tunnel drive planning, the DCA completed additional testing to confirm the Tonon test results and to evaluate the volcanic ash (Tephra – VP) and other soils within the tunnel horizon using the remaining samples stored in DWR's and AECOM's Sacramento warehouses. Attachment 3 provides a detailed summary of the 2020 DCA testing program, including the depth, soil type, and testing purpose of each sample. The selected samples were shipped to two different laboratories: (1) the Norwegian Technical Institute (NTNU), which was were responsible for developing the SAT testing procedure (Nilsen et al., 2006, 2007); and (2) the Colorado School of Mines (CSM) in Golden, Colorado.

### Delta Conveyance Design & Construction Authority Technical Memorandum

Table 2 presents the results of the 2020 DCA testing program and includes the SAT values from prior testing, where available. Attachment 1 presents a map giving the locations of all borings for which SAT results are now available. The NTNU and CSM results suggest the abrasivity of the soils within the planned tunnel horizon is low to medium. It is noted that the tests conducted by Tonon USA follow the procedure outlined by Nilsen (2006), using a maximum allowable grain size of 1 millimeter (mm), while the 2020 DCA tests follow Nilsen (2007) and allow for a grain size of up to 4 mm. Jakobsen et al. (2013) demonstrated that there is a negligible difference between the two methods and that the SAT results are approximately equivalent, within the accuracy of the test. No further distinction between the 1 mm and 4 mm tests will be made.

|             | Depth<br>(ft l | Range<br>ogs) |                     | DCA Test     | ting Purpos         | e                |                   | SAT Results      | 5                  |
|-------------|----------------|---------------|---------------------|--------------|---------------------|------------------|-------------------|------------------|--------------------|
| Boring ID   | From           | То            | USCS <sup>a,b</sup> | Confirmatory | Tephra <sup>d</sup> | New <sup>e</sup> | NTNU <sup>f</sup> | CSM <sup>f</sup> | Tonon <sup>b</sup> |
| DCA-DH-050  | 150.4          | 157.2         | SP-SM               | х            |                     |                  | 24.5              | 30.0             | 37.0               |
| DCA-DH-054  | 99.5           | 105.3         | SM                  | х            |                     |                  | 17.5              | 20.0             | 34.0               |
| DCIF-DH-013 | 116.5          | 119.0         | SM                  | х            |                     |                  | 9.5               | 16.0             | 23.0               |
| DCIF-DH-015 | 109.5          | 116.0         | SM                  | x            |                     |                  | 10.5              | 14.0             | 28.0               |
| DCRA-DH-007 | 101.5          | 117.7         | SM                  | Х            |                     |                  | 10.0              | 13.0             | 28.5               |
| DCRA-DH-012 | 142.0          | 147.5         | s(ML)               | x            |                     |                  | 5.5               | 13.0             | 48.0               |
| DCA-DH-014  | 130.0          | 132.0         | VP                  |              | х                   | х                | 7.5               |                  |                    |
| DCA-DH-024  | 142.0          | 143.5         | VP                  |              | х                   | х                | 1.5               |                  |                    |
| DCBF-DH-018 | 157.0          | 157.5         | SM                  |              |                     | х                |                   | 28.0             |                    |
| DCBF-DH-018 | 162.5          | 163.0         | SP-SM               |              |                     | х                |                   | 30.5             |                    |
| DCBF-DH-021 | 108.0          | 109.5         | (CL)s               |              |                     | х                | 4.5               |                  |                    |
| DCE-DH-003  | 145.3          | 148.5         | SP                  |              |                     | х                |                   | 14.0             |                    |
| DCE-DH-003  | 165.3          | 167.0         | МН                  |              |                     | х                |                   | 3.5              |                    |
| DCE-DH-004  | 142.5          | 146.0         | CL                  |              |                     | х                |                   | 2.0              |                    |
| DCE-DH-005  | 162.8          | 163.6         | SM                  |              |                     | х                |                   | 0.0              |                    |
| DCE-DH-005  | 166.5          | 168.5         | SM                  |              |                     | х                |                   | 13.5             |                    |
| DCN4-DH-034 | 138.0          | 141.3         | VP                  |              | х                   | х                | 1.0               |                  |                    |
| DCR-DH-010  | 149.0          | 149.5         | ML                  |              |                     | х                | 4.0               |                  |                    |
| DCR-DH-010  | 159.0          | 159.5         | SC                  |              |                     | х                | 10.5              |                  |                    |
| DCRA-DH-004 | 142.0          | 144.0         | (CL)s               |              |                     | х                |                   | 0.5              |                    |
| DCRA-DH-004 | 162.5          | 164.5         | s(ML)               |              |                     | х                |                   | 2.0              |                    |
| DCRA-DH-005 | 186.9          | 187.7         | VP                  |              | х                   | х                | 1.0               |                  |                    |

#### Table 2. Summary of Delta Conveyance SAT Results

|             | Depth<br>(ft l | Range<br>bgs) |                     | DCA Test     | ing Purpos          | e                |                   | SAT Result       | 5                  |
|-------------|----------------|---------------|---------------------|--------------|---------------------|------------------|-------------------|------------------|--------------------|
| Boring ID   | From           | То            | USCS <sup>a,b</sup> | Confirmatory | Tephra <sup>d</sup> | New <sup>e</sup> | NTNU <sup>f</sup> | CSM <sup>f</sup> | Tonon <sup>b</sup> |
| DCRA-DH-006 | 163.0          | 164.5         | SP-SM               |              |                     | х                | 15.5              |                  |                    |
| WFT-DH-002  | 228.0          | 232.0         | VP                  |              | Х                   | х                | 1.0               |                  |                    |
| DCA-DH-008a | 115.5          | 116.8         | SP                  |              |                     |                  |                   |                  | 27.5               |
| DCA-DH-014  | 70.0           | 72.6          | SM                  |              |                     |                  |                   |                  | 16.0               |
| DCA-DH-017  | 77.0           | 83.5          | SP                  |              |                     |                  |                   |                  | 18.5               |
| DCA-DH-024  | 72.0           | 81.5          | SM                  |              |                     |                  |                   |                  | 25.0               |
| DCA-DH-024  | 144.0          | 147.0         | SP                  |              |                     |                  |                   |                  | 7.0                |
| DCA-DH-030  | 80.0           | 84.0          | SP-SM               |              |                     |                  |                   |                  | 20.0               |
| DCA-DH-030  | 130.0          | 136.5         | (ML)s               |              |                     |                  |                   |                  | 7.5                |
| DCA-DH-031  | 124.5          | 127.0         | S(CL)               |              |                     |                  |                   |                  | 8.5                |
| DCA-DH-037  | 75.0           | 81.5          | SP                  |              |                     |                  |                   |                  | 23.0               |
| DCA-DH-059  | 147.0          | 148.5         | SM                  |              |                     |                  |                   |                  | 26.5               |
| DCBF-DH-002 | 120.0          | 121.5         | SP                  |              |                     |                  |                   |                  | 45.0               |
| DCBF-DH-002 | 125.0          | 126.3         | SM                  |              |                     |                  |                   |                  | 45.0               |
| DCIF-DH-013 | 156.2          | 156.7         | (SM)g               |              |                     |                  |                   |                  | 28.0               |
| DCIF-DH-015 | 164.5          | 165.0         | (SP)g               |              |                     |                  |                   |                  | 32.0               |
| DCRA-DH-002 | 76.5           | 77.5          | SP                  |              |                     |                  |                   |                  | 51.5               |
| DCRA-DH-002 | 81.5           | 83.0          | (GM)s               |              |                     |                  |                   |                  | 39.5               |
| DCRA-DH-003 | 141.5          | 142.0         | SM                  |              |                     |                  |                   |                  | 23.0               |
| DCRA-DH-004 | 151.5          | 153.0         | SP                  |              |                     |                  |                   |                  | 31.0               |
| DCRA-DH-006 | 140.0          | 140.5         | SP-SM               |              |                     |                  |                   |                  | 37.0               |
| DCRA-DH-006 | 148.0          | 151.0         | SM                  |              |                     |                  |                   |                  | 39.5               |
| DCRA-DH-009 | 151.5          | 124.9         | SM                  |              |                     |                  |                   |                  | 20.5               |
| DCRA-DH-010 | 172.5          | 179.0         | SM                  |              |                     |                  |                   |                  | 24.5               |
| DCRA-DH-011 | 118.0          | 120.0         | SP-SM               |              |                     |                  |                   |                  | 30.0               |
| DCRA-DH-011 | 124.5          | 125.0         | SM                  |              |                     |                  |                   |                  | 59.5               |
| DCRA-DH-012 | 77.5           | 84.0          | SM                  |              |                     |                  |                   |                  | 41.0               |
| DCRA-DH-013 | 128.0          | 138.0         | SP                  |              |                     |                  |                   |                  | 22.0               |

### Table 2. Summary of Delta Conveyance SAT Results

|             | Depth<br>(ft l | Range<br>ogs) |                     | DCA Test     | ing Purpos          | e                |                   | SAT Results      | 5                  |
|-------------|----------------|---------------|---------------------|--------------|---------------------|------------------|-------------------|------------------|--------------------|
| Boring ID   | From           | То            | USCS <sup>a,b</sup> | Confirmatory | Tephra <sup>d</sup> | New <sup>e</sup> | NTNU <sup>f</sup> | CSM <sup>f</sup> | Tonon <sup>b</sup> |
| DCRA-DH-014 | 138.5          | 139.0         | SM                  |              |                     |                  |                   |                  | 53.0               |
| DCRA-DH-014 | 148.5          | 153.5         | SP-SM               |              |                     |                  |                   |                  | 41.0               |
| DCRA-DH-017 | 76.5           | 81.5          | SM                  |              |                     |                  |                   |                  | 46.5               |
| DCRA-DH-022 | 121.0          | 127.5         | (CL)s, SM           |              |                     |                  |                   |                  | 43.0               |
| WFT-DH-001  | 108.0          | 109.5         | SM                  |              |                     |                  |                   |                  | 13.0               |
| WFT-DH-001  | 123.0          | 124.5         | SM                  |              |                     |                  |                   |                  | 13.5               |
| WFT-DH-002  | 81.5           | 83.0          | SP-SM               |              |                     |                  |                   |                  | 16.0               |
| WFT-DH-002  | 106.0          | 107.5         | SM                  |              |                     |                  |                   |                  | 22.0               |
| WFT-DH-003  | 90.5           | 92.5          | SP                  |              |                     |                  |                   |                  | 15.5               |
| WFT-DH-003  | 127.3          | 128.5         | SM                  |              |                     |                  |                   |                  | 15.0               |

#### Table 2. Summary of Delta Conveyance SAT Results

<sup>a</sup> Unified Soil Classification System

<sup>b</sup> Appendix A-D (DWR, 2013), Appendix E (DWR, 2018)

<sup>c</sup> Confirmatory samples are used to compare results against previously tested samples

<sup>d</sup> Samples containing tephra (volcanic ash) were previously untested. (Maier, K.L., et al., 2015)

<sup>e</sup> Samples from new borings will be tested to investigate data gaps within the tunnel horizon along the central and eastern corridors as defined in the NOP and near the southern forebay

<sup>f</sup> Mean AVS as presented in NTNU Testing Report (2020) and CSM Testing Report (2020)

Notes:

For an explanation of cell shading, refer to Table 1

ft bgs = feet below ground surface

ID = identification

CL = clay, V P= tephra, MH = silt, SM = silty sand, SP = poorly-graded sand, SP-SM = poorly-graded sand with silt, GM = gravel with silt

Figure 1 presents a "box and whiskers" plot of prior SAT test results by Tonon, with 2020 DCA test results from NTNU and CSM superimposed as individual points.



#### Figure 1. Summary of Current Project SAT Test Results

Boxes denote  $\pm$  one standard deviation, "whiskers" denote data minimum and maximum, lines denote mean values, and "x"s denote average values; horizontal axis is USCS soil type and axis value in parenthesis is number of Tonon USA tests per soil type. Note the Tonon data outlier datapoint shown for SP soil type.

Figure 2 presents a plot of reported SAT values from the Seattle, Washington area by soil type (Nilsen, 2006).



Source: (Nilsen et al., 2006)



Table 3 presents the confirmatory testing results presented in Table 1, alongside of geological unit identified by the DCA and quartz content results from X-ray diffraction tests performed on samples of the soil strata by Tonon USA.

|             | Depth<br>(ft l | Range<br>ogs) |                     | :                 | SAT Results      | 5                  |                 | Ouartz Content |
|-------------|----------------|---------------|---------------------|-------------------|------------------|--------------------|-----------------|----------------|
| Boring ID   | From           | То            | USCS <sup>a,b</sup> | NTNU <sup>c</sup> | CSM <sup>c</sup> | Tonon <sup>b</sup> | Geological Unit | (%)            |
| DCA-DH-050  | 150.4          | 156.0         | SP-SM               | 24.5              | 30.0             | 37.0               | Qr              | 37.0           |
| DCA-DH-054  | 99.5           | 105.3         | SM                  | 17.5              | 20.0             | 34.0               | Qm              | 30.5           |
| DCIF-DH-013 | 116.5          | 119.0         | SM                  | 9.5               | 16.0             | 23.0               | Qr              | 50.3           |
| DCIF-DH-015 | 110.7          | 116.0         | SM                  | 10.5              | 14.0             | 28.0               | Qtl             | 49.9           |
| DCRA-DH-007 | 101.5          | 117.7         | SM                  | 10.0              | 13.0             | 28.5               | Qr              | 46.1           |
| DCRA-DH-012 | 142.0          | 147.5         | s(ML)               | 5.5               | 13.0             | 48.0               | Qr              | Not Available  |

#### Table 3. Summary of SAT Confirmatory Test Results

<sup>a</sup> Unified Soil Classification System

<sup>b</sup> Appendix A-D (DWR, 2013), Appendix E (DWR, 2018).

<sup>c</sup> Mean AVS as presented in NTNU Testing Report (2020) and CSM Testing Report (2020)

Notes:

For an explanation of cell shading refer to Table 1

NA = not available

Qm = Modesto

Qr = Riverbank

Qtl = Turlock Lake

Figure 3 presents a plot of the difference in reported SAT values versus the quartz content for the sand samples of the confirmatory dataset (note, the quartz content for the silt samples were not available).



### **Figure 3. Difference between Confirmatory SAT Values and Quartz Content** *Ratio of 2020 confirmatory results (average of NTNU and CSM value) to Tonon USA results*

### Observations

The following observations were noted:

If one averages the SAT values reported by NTNU and CSM for a given "confirmatory" soil sample and compares the average to the Tonon result for the same sample, the 2020 DCA results are between 19- and 74-percent of the Tonon USA result, with an average of approximately 50-percent. That difference is even higher if one compares the Tonon USA results directly to the NTNU results.

The contrast in the difference between the 2020 DCA results and the prior results is most evident for the materials classified as silt (ML), especially when compared to the silt material results presented for the Seattle area on Figure 2.

There does not appear to be a correlation between the variability of the test results to the geological unit. The six confirmatory samples were collected from the Pleistocene alluvial soils of the Riverbank, Modesto, and Turlock Lake formations.

There may be a correlation between the quartz content of the soils and the differences in SAT results (Figure 3). It may be observed that sands with greater quartz contents reported lower differences between the confirmatory results and those from Tonon. This would agree with the observation that the greatest discrepancy in results is with the silt samples, which would be expected to generally have low quartz content.

A review of the SAT results suggests the cleaner sands (poorly graded sand with silt [SP-SM]) are reporting SAT values from CSM and NTNU in the "Medium" to "High" category, although the SAT results are typically 50 percent those reported by Tonon USA.

Samples of volcanic tephra identified as discrete layers within the tunnel horizon, as well as fine-grained silts and clays, appear to have low abrasivity.

## 2. Recommendations

Given the large differences between the SAT results from Tonon and those from CSM and NTNU, DCA recommends discounting the Tonon results in silts and factoring the results from sands when planning drive lengths.

DCA further recommends using NTNU, the test developer, for future SAT testing; or considering other North American laboratories in conjunction with confirmatory duplicate testing by NTNU to validate the results.

### 3. References

Colorado School of Mines (CSM). 2020. Soil Abrasion Testing, EMI Report #471. Earth Mechanics Institute.

Department of Water Resources (DWR). 2013. 2009 – 2012 Geotechnical Data Report, Pipeline/Tunnel Option. Delta Habitat Conservation and Conveyance Program.

Department of Water Resources (DWR). 2018. Geotechnical Data Report, Access Road and Site Improvements. Bouldin Island, California WaterFix.

Jakobsen, D., A. Bruland, and F. Dahl. 2013. Review and assessment of the NTNU/SINTEF Soil Abrasion Test (SAT<sup>™</sup>) for determination of abrasiveness of soil and soft ground. TUST 37. pp. 107 -114.

Maier, K.L., et al. 2015. "Quaternary tephrochronology and deposition in the subsurface Sacramento-San Joaquin Delta." Quaternary Research.-<u>http://dx.doi.org/10.1016/j.yqres.2014.12.007</u> <u>Accessed June 15</u>, 2020.

Nilsen, B., Dahl, F., Holzhäuser, J., and Raleigh, P. 2006. SAT: NTNU's new soil abrasion test. Tunnels and Tunnelling International. No. 38. pp. 43-45.

Nilsen, B., Dahl, F., Holzhäuser, J. and Raleigh, P. 2007. New test methodology for estimating the abrasiveness of soils for TBM tunneling, RETC Proceedings, 104 – 116.

Norwegian University of Science and Technology (NTNU). 2020. Soil Abrasion Test Report No. 102022149-023. SINTEF.

# 4. Document History and Quality Assurance

Reviewers listed have completed an internal quality review check and approval process for deliverable documents that is consistent with procedures and directives identified by the Engineering Design Manager and the DCA.

|                          | Approval Name                         | es and Roles                |                               |
|--------------------------|---------------------------------------|-----------------------------|-------------------------------|
| Prepared by              | Internal Quality<br>Control review by | Consistency<br>review by    | Approved for submission by    |
| John Hinton /<br>EDM     | Andrew Finney /<br>EDM Geotechnical   | Gwen Buchholz<br>/ DCA      | Terry Krause /<br>EDM Project |
| Geotechnical<br>Engineer | and Field Work Lead                   | Environmental<br>Consultant | Manager                       |

This interim document is considered preliminary and was prepared under the responsible charge of Andrew Finney, California Professional Engineering License GE2759.

### Note to Reader

This is an early foundational technical document. Contents therefore reflect the timeframe associated with submission of the initial and final drafts. Only minor editorial and document date revisions have been made to the current Conformed Final Draft for Administrative Draft Engineering Project Report version.

Attachment 1 Map of Borings with Samples Used in Soil Abrasion Tests



Data Source: DCA, DWR

Attachment 2 Prior Soil Abrasion Tests Memorandum



| Subject         | Soil Abrasion Test Results                                |
|-----------------|-----------------------------------------------------------|
| Project feature | Geotechnical                                              |
| Prepared for    | Files                                                     |
| Prepared by     | John Hinton/EDM                                           |
| Copies to       | Andrew Finney/EDM                                         |
| Date/Version    | Draft V1, 01/31/2020                                      |
| Reference no.   | EDM_GE_CE_TMO_Soil Abrasion Test Memo_000457_1_D_20200131 |

# 1. Introduction

Between 2011 and 2018, a series of Soil Abrasion Tests (SATs) and Slurry Abrasivity Tests were performed by Tonon USA and White Rock Engineering Services, respectively, to quantify the abrasivity of soils within the planned tunnel horizon. These tests were performed on samples from elevations of between -100 and -170 feet (MSL) from project borings drilled between 2009 - 2018. The results of the tests are contained in Appendix E of the 2013 Geotechnical Data Report (DWR, 2013), Appendix E9 of the 2018 Bouldin Island Geotechnical Data Report (DWR, 2018), and summarized in this memo.

# 1.1 Soil Abrasion Tests

Table 1 was prepared to summarize the abrasion test results completed to-date and to clarify the specific samples and depth ranges tested. Table 1 shows the samples used for each SAT and the resulting average abrasion value (AVS), as performed by Tonon USA, between 2011 and 2012. It should be noted that all samples were of a single material (soil type), as shown in Table 1, except for DCRA-DH-022. Also of note was the fact that the project boring logs identified the AVS value at the top of the sample range in their Remarks column, as shown in Table 1. Table 2 gives the samples used and the associated AVS and LCPC results by Tonon USA from an abrasivity study performed on samples obtained from exploration at Bouldin Island in 2018.

| Table 1. Soil A | brasion Test Sa | amples and Results ( | DWR, 2013)             |                               |                          |                |      |
|-----------------|-----------------|----------------------|------------------------|-------------------------------|--------------------------|----------------|------|
|                 |                 | Ac                   | ctual <sup>1</sup>     | Rep                           | ported as                |                |      |
| Test Date Group | Boring          | Depth Range (feet)   | Sample Number          | Lab Test Results <sup>2</sup> | Boring Logs <sup>3</sup> | Material Type⁴ | AVS  |
| 1/31/2011       | DCRA-DH-002     | 76.5-77.5            | P09A, P09B             | 75-77.5                       | S09A-075.0-076.5         | SP             | 51.5 |
|                 |                 | 81.5-83              | P10A, P10B             | 81.5-83                       | P10A-081.5-082.0         | (GM)s          | 39.5 |
|                 | DCRA-DH-006     | 140-140.5            | P23A                   | 140-141                       | P23A-140.0-140.5         | SP-SM          | 37   |
|                 |                 | 148-151              | S23A, P25A             | 148-151                       | S23A-148.0-149.5         | SM             | 39.5 |
|                 | DCRA-DH-010     | 172.5-179            | S25A, P27A, S26A       | 172.5-179                     | S25A-172.5-174.0         | SM             | 24.5 |
|                 | DCRA-DH-011     | 118-120              | S15A, P15A             | 118-120                       | S15A-118.0-119.5         | SP-SM          | 30   |
|                 |                 | 124.5-125            | P16A                   | 125-126                       | P16A-124.5-125.0         | SM             | 59.5 |
|                 | DCRA-DH-012     | 77.5-84              | S12A, P11A, S13A       | 77.5-84                       | S12A-077.5-079.0         | SM             | 41   |
|                 |                 | 144.5-145            | P24A                   | 144.5-145.5                   | P24A-144.5-145.0         | s(ML)          | 48   |
|                 | DCRA-DH-014     | 138.5-139            | P22A                   | 139-140                       | P22A-138.5-139.0         | SM             | 53   |
|                 |                 | 148.5-153.5          | P24A, S24A             | 148.5-153.5                   | P24A-148.5-149.0         | SP-SM          | 41   |
|                 | DCRA-DH-017     | 76.5-81.5            | P12A, S14A, P13A       | 76.5-81.5                     | P2A-076.5-077.0          | SM             | 46.5 |
|                 | DCRA-DH-022     | 121-127.5            | S19A, S20A, P21A       | 121-127.5                     | 125**                    | (CL)s, SM      | 43   |
| 3/28/2012       | DCA-DH-037      | 75-81.5              | S12A, P15A, S13A       | 71-88                         | 71**                     | SP             | 23   |
|                 | DCA-DH-031      | 124.5-127            | Box 3                  | 122.5-131.5                   | Box 3 124.5-127.0        | S(CL)          | 8.5  |
|                 | DCA-DH-030      | 80-84                | S13A, P16A             | 72-89.5                       | 72**                     | SP-SM          | 20   |
|                 |                 | 130-136.5            | S23A, P26A, S24A       | 124.5-142                     | 124.5**                  | (ML)s          | 7.5  |
|                 | DCA-DH-024      | 72-81.5              | P14A, S14A, P15A, S15a | 67.5-83                       | 68**                     | SM             | 25   |
|                 |                 | 144-147              | P29A, S28A, P28C1/2    | 143.5-150                     | 147.5**                  | SP             | 7    |
|                 | DCA-DH-017      | 77-83.5              | P15A, P16A, S13A1/2    | 74-98.5                       | P14B-074.0-074.5         | SP             | 18.5 |
|                 | DCA-DH-014      | 70-72.6              | P14A, P14B             | 63.8-79.5                     | P13A-065.5-066.0         | SM             | 16   |

|                 |             | Act                | ual <sup>1</sup> | Rep                           | oorted as                |                |      |
|-----------------|-------------|--------------------|------------------|-------------------------------|--------------------------|----------------|------|
| Test Date Group | Boring      | Depth Range (feet) | Sample Number    | Lab Test Results <sup>2</sup> | Boring Logs <sup>3</sup> | Material Type⁴ | AVS  |
| 11/9/2012       | DCRA-DH-003 | 141.5-142          | P21              | 142                           | Box 5 142.0-143.5        | SM             | 23   |
|                 | DCRA-DH-004 | Unknown            | P24*             | 152                           | Box 5 151.5-153.0        | SP             | 31   |
|                 | DCRA-DH-007 | Unknown***         | Unknown          | 117                           | Box 3 117.7-117.9        | SM             | 28.5 |
|                 | DCRA-DH-009 | Unknown            | P16*             | 122                           | Box 1 121.5-124.9        | SM             | 20.5 |
|                 | DCRA-DH-013 | Unknown            | P18*             | 129                           | Box 4 128.0-130.0        | SP             | 22   |
|                 | DCA-DH-008a | Unknown            | P24*             | 116                           | Box 2 115.5-116.8        | SP             | 27.5 |
|                 | DCA-DH-050  | Unknown            | P33*             | 156                           | Box 6 156.0-157.2        | SP-SM          | 37   |
|                 | DCA-DH-054  | Unknown            | P22*             | 100                           | Box 1 099.5-102.3        | SM             | 34   |
|                 | DCA-DH-059  | 147-148.5          | P31              | 147                           | P31A-147.0-148.5         | SM             | 26.5 |
|                 | DCBF-DH-002 | 120-121.5          | S21              | 120                           | S21A-120.0-121.5         | SP             | 45   |
|                 |             | 125-126.25         | S22              | 125                           | S22A-125.0-126.25        | SM             | 45   |
|                 | DCIF-DH-015 | 164.5-165          | P33              | 166                           | Box 10 166.0-166.5       | (SP)g          | 32   |
|                 |             | Unknown            | P22*             | 110                           | Box 4 109.5-110.7        | SM             | 28   |
|                 | DCIF-DH-013 | Unknown            | P24*             | 118                           | Box 14 116.5-119.0       | SM             | 23   |
|                 |             | 156.2-156.7        | P32              | 156                           | Box 20 155-156.2         | (SM)g          | 28   |

<sup>1</sup> As identified in laboratory test request forms

<sup>2</sup> Appendix E (DWR, 2013)

<sup>3</sup> As shown in Remarks column in logs provided in Appendices A-D (DWR, 2013)

<sup>3</sup> Unified Soil Classification System as defined in the project boring logs provided in Appendices A-D (DWR, 2013)

\*No such sample number shown in logs contained in Appendices A-D (DWR, 2013)

\*\* No retained sample noted in logs contained in Appendices A-D (DWR, 2013). Depth given is depth of test "SA" shown in Other Lab Tests column

AVS = average abrasion value

\*\*\*Reported range is shown as clay (CL), while sample was identified to be sand (SM) and therefore sample was attributed to interval 117.7-177.9.

|--|

| Boring     | Depth Range (feet) | Project Sample Number | Material Type <sup>1</sup> | AVS  | LCPC <sup>2</sup> |
|------------|--------------------|-----------------------|----------------------------|------|-------------------|
| WFT-DH-001 | 108.0-109.5        | P21A                  | SM                         | 13   | 14                |
| WFT-DH-001 | 123.0-124.5        | P22A                  | SM                         | 13.5 | 90                |
| WFT-DH-002 | 81.5-083.0         | P14A                  | SP-SM                      | 16   | 56                |
| WFT-DH-002 | 106.0-107.5        | P17A                  | SM                         | 22   | 56                |
| WFT-DH-003 | 90.5-092.5         | P17A                  | SP                         | 15.5 | 18                |
| WFT-DH-003 | 127.3-128.5        | P25A                  | SM                         | 15   | 58                |

Source: Bouldin Island Geotechnical Data Report

<sup>1</sup> Unified Soil Classification System as defined in the project boring logs provided in Appendix E9 (DWR, 2018)

<sup>2</sup> Laboratoire Central des Ponts et Chaussées abrasion test

AVS = average abrasion value

Table 3 summarizes the range of AVS and LCPC values shown in Tables 1 and 2.

| Test | Minimum | Maximum  | Average | Average SAT + 1 std. |
|------|---------|----------|---------|----------------------|
| SAT  | 7.0     | 59.5     | 29.0    | 42                   |
| LPCC | 14.0    | 90.0     | 48.7    | 77                   |
|      | 1       | <u> </u> | I       | I                    |

Table 3. Summary of SAT and LCPC results

# 1.2 Slurry Abrasivity Tests

In addition to SATs, a series of slurry abrasivity tests were performed on composite samples from 2010 to 2012 by White Rock Engineering Services. Table 4 summarizes the samples used within each test as well as the associated standard and inhibited Miller Number.

| Test Date Group | Boring              | Depth Range (feet) | Project Sample<br>Number | Standard Miller<br>Number | Inhibited Miller<br>Number |
|-----------------|---------------------|--------------------|--------------------------|---------------------------|----------------------------|
| 1/13-1/27       | DCRA-DH-001         | 73-91.5            | P07A, S09A               | 262.1                     | 217.3                      |
|                 |                     | 133.5-136.5        | P19A, S18A               | 171.5                     | 132                        |
|                 |                     | 147.5-149          | P22A                     | 133.1                     | 94.4                       |
|                 | DCRA-DH-002         | 113.5-114          | P16A                     | 405.1                     | 350.6                      |
|                 |                     | 115-121.5          | S17A, S18A               | 429.7                     | 385.2                      |
|                 | DCRA-DH-006         | 83-94.5            | S11A, S13A               | 248.3                     | 163.3                      |
|                 |                     | 101.5-102          | P15A                     | 148.9                     | 112.7                      |
|                 |                     | 155.5-159.5        | P26A, S25A               | 177.4                     | 128.6                      |
|                 | DCRA-DH-008         | 100-106.5          | S15A, S16A               | 183.9                     | 158.6                      |
|                 | DCRA-DH-010         | 70-75              | P06A, S07A, P07A         | 188.5                     | 197.5                      |
|                 | DCRA-DH-011 79.5-83 |                    | B01A (shaker<br>sample)  | 162.8                     | 130.5                      |
|                 |                     | 125-126            | P16A                     | 108.7                     | 87.9                       |
|                 | DCRA-DH-012         | 84.5-89            | P12A, S14A               | 186.7                     | 155                        |
|                 | DCRA-DH-014         | 62-68.5            | S07A, S08A               | 183.3                     | 162.2                      |
|                 |                     | 72-87              | S09A, P11A               | 243.6                     | 205.5                      |
|                 |                     | 138.5-139          | P22A                     | 129.2                     | 70.1                       |
|                 | DCRA-DH-017         | 101-102            | P17A                     | 151.2                     | 108.1                      |
|                 | DCRA-DH-022         | 67.5-69.5          | S10A, P10A               | 162                       | 130.4                      |
|                 |                     | 79-83              | P12A, S13A               | 152.2                     | 114                        |
|                 |                     | 89-89.5            | P14A                     | 292.3                     | 268                        |
|                 |                     | 94-104             | S16A, S17A, P15A         | 203.9                     | 134                        |
|                 | DCRA-DH-024         | 80-86.5            | S15A, S16A               | 276.8                     | 226.6                      |

Table 4. Slurry Abrasivity Test Samples and Results

| -               | -           | -                  |                          |                           |                            |
|-----------------|-------------|--------------------|--------------------------|---------------------------|----------------------------|
| Test Date Group | Boring      | Depth Range (feet) | Project Sample<br>Number | Standard Miller<br>Number | Inhibited Miller<br>Number |
| 11/4-12/4       | DCA-DH-037  | 71-88              | P14A                     | 179                       | 132                        |
|                 | DCA-DH-031  | 81.2-91.5          | Box 1                    | 159                       | 124                        |
|                 |             | 91.5-99.4          | P20A                     | 179                       | 139                        |
|                 |             | 122.5-131.5        | S21A, S22A               | 91                        | 46                         |
|                 | DCA-DH-030  | 72-89.5            | P14A, S12A               | 162                       | 122                        |
|                 |             | 124.5-142          | S22A, P25A               | 62                        | 26                         |
|                 | DCA-DH-024  | 67.5-83            | P13A, P14A               | 238                       | 194                        |
|                 |             | 143.5-150          | P28B, P28C1/2            | 148                       | 103                        |
|                 | DCA-DH-017  | 45-50              | S06A, S07A               | 212                       | 186                        |
|                 |             | 74-98.5            | P14B, P15A,<br>S13A1/2   | N/A*                      | N/A*                       |
|                 | DCA-DH-014  | 63.8-79.5          | S11B, P13B               | 171                       | 131                        |
| 11/4-12/20      | DCA-DH-059  | 125.5-132.0        | S20A, P27A, S21A         | 230                       | 178                        |
|                 | DCBF-DH-001 | 87.0-96.5          | P18A, P19A, S17A         | 252                       | 177                        |
|                 |             | 126.5-132.5        | P26A, S24A, P27A         | 232                       | 196                        |
|                 | DCBF-DH-003 | 115.0-121.5        | S21A, P26A, S22A         | 232                       | 171                        |

Table 4. Slurry Abrasivity Test Samples and Results

<sup>1</sup> Year of testing not provided in Appendix E (DWR, 2013)

Source: 2011 Geotechnical Data Report, Appendix E

\* Samples were never received by Tonon USA

Table 5 summarizes the range of AVS and LCPC results given in Table 4.

### Table 5. Summary of Slurry Abrasivity Test Results

| Test                    | Minimum | Maximum | Average | Average + 1 std. |
|-------------------------|---------|---------|---------|------------------|
| Standard Miller Number  | 62.0    | 429.7   | 199     | 273              |
| Inhibited Miller Number | 26.0    | 385.2   | 157     | 229              |

Attachment 3 Additional Soil Abrasion Test Work Plan



| Subject         | Soil Abrasion Test Work Plan                                   |
|-----------------|----------------------------------------------------------------|
| Project feature | Geotechnical                                                   |
| Prepared for    | Files                                                          |
| Prepared by     | John Hinton/EDM                                                |
| Copies to       | Andrew Finney/EDM                                              |
| Date/Version    | Draft, V3, 02/18/2020                                          |
| Reference no.   | DCA_GE_CE_MEM_Soil Abrasion Test Work Plan_000467_1_D_20200213 |

# 1. Introduction

Between 2011 and 2018, a series of Soil Abrasion Tests (SATs) were performed by Tonon USA in order to quantify the abrasion potential of soils within the Delta. These tests were performed on samples from elevations of between -100 and -170 feet (MSL) from project borings drilled between 2009 and 2018. The results of the SATs are contained in Appendix E of the 2013 Geotechnical Data Report (DWR, 2013) and the 2018 Bouldin Island Geotechnical Data Report (DWR, 2018). The Tonon USA SAT results classify 71% of the samples as highly abrasive, while the remaining 29% are classified as moderately abrasive.

In order to confirm the 2009-2018 test results, to evaluate the repeatability of the SAT, and to expand the suite of SAT results, the DCA will conduct further abrasion testing on existing samples of soils collected as part of the 2009-2018 exploration programs. The additional testing will be performed at the Colorado School of Mines (CSM) and the Norwegian University of Science and Technology (NTNU), both educational institutions with established testing laboratories. It is noted that the SAT test was originally developed at NTNU (Nilsen et. al, 2006).

## 1.1 Procedure

Representatives of the DCA identified and catalogued existing soil samples located in the Department of Water Resources and AECOM warehouses in Sacramento. Identified untested soil samples satisfy one or more of the following criteria:

- of similar USCS classification and at similar depths as the original samples tested by Tonon USA
- containing volcanic ash (tephra)
- within a potential tunnel horizon

In addition, samples must meet the following minimum: at least 1kg (2.2lb) of fine material or 2kg (4.4lb) of granular material (>4mm), per NTNU SAT standard (Nilsen et. al, 2006). Attachment 1 presents the 30 soil samples identified for SAT, for which the testing destination is determined as follows:

- 6 confirmatory samples will each be split into two samples (12 samples total) to allow concurrent testing at CSM and NTNU. The minimum size for these samples is twice the above minimums.
- all new samples containing tephra (5 samples total) will be tested at NTNU to allow for direct comparison between different tephra layers
- the remaining new samples (exclusive of samples of tephra) (13 samples total) will be divided into two groups and sent to CSM and NTNU, as defined in Attachment 1.

| Thai | unit tooting | and ahin | nina nriaa | a and tha | final anat | o oro abvor | . in T/     | ahla 1  |
|------|--------------|----------|------------|-----------|------------|-------------|-------------|---------|
| пес  | mii iesiinu  | and shit | оппа опсе  | s and me  | innai cosi | s are uiver | 1 III 1 i i | 10IE I. |
|      |              |          |            |           |            |             |             |         |

|                                   | Number of tests       | Cost per test<br>(USD) <sup>1,2</sup> | Administration<br>Fee (USD) <sup>1,2</sup> | Est. Shipping<br>Cost (USD) <sup>3</sup> | Approx. Total Cost<br>(USD) |
|-----------------------------------|-----------------------|---------------------------------------|--------------------------------------------|------------------------------------------|-----------------------------|
| CSM                               | 15                    | 650                                   | 0                                          | 50                                       | 9,800                       |
| NTNU                              | 15                    | 706                                   | 200                                        | 120                                      | 10,915                      |
|                                   |                       |                                       |                                            |                                          | 20,715                      |
| Sources:                          |                       |                                       |                                            |                                          |                             |
| <sup>1</sup> Colorado School of M | lines, Earth Mechani  | cs Institute; Attachme                | ent 2                                      |                                          |                             |
| <sup>2</sup> Norwegian University | of Science and Tech   | nology; Attachment                    | 3. Includes 25% VAT.                       |                                          |                             |
| <sup>3</sup> FedEX ground, interr | national: Assuming 4. | 4 lb/sample, 15 sam                   | oles per box, 1 box eac                    | ch                                       |                             |

# 2. References

- Maier, K.L., et al., (2015). Quaternary tephrochronology and deposition in the subsurface Sacramento– San Joaquin Delta, Quaternary Research (2015), http://dx.doi.org/10.1016/j.yqres.2014.12.007.
- Nilsen, Bjørn & Dahl, Filip & Holzhauser, Jurg & Raleigh, Peter. (2006). SAT: NTNU's new soil abrasion test. Tunnels and Tunnelling International. 38. 43-45.
- Department of Water Resources (DWR)(2013). 2009 2012 Geotechnical Data Report, Pipeline/Tunnel Option. Delta Habitat Conservation and Conveyance Program.
- Department of Water Resources (DWR)(2018). Geotechnical Data Report, Access Road and Site Improvements. Bouldin Island, California WaterFix.



Samples for SAT

| Table 1-1. Samples for SAT |                     |       |       |                   |                           |                     |                  |      |        |
|----------------------------|---------------------|-------|-------|-------------------|---------------------------|---------------------|------------------|------|--------|
|                            | Retained            | Depth | Range |                   | Testing                   | g Purpose           |                  | Labo | ratory |
| Boring ID                  | Sample <sup>1</sup> | То    | From  | USCS <sup>2</sup> | Confirmatory <sup>3</sup> | Tephra <sup>4</sup> | New <sup>5</sup> | CSM  | NTNU   |
| DCIF-DH-013                | Box 14              | 116.5 | 119.0 | SM                | х                         |                     |                  | x    | x      |
| DCRA-DH-012                | Box 4               | 142.0 | 147.5 | s(ML)             | х                         |                     |                  | x    | x      |
| DCA-DH-050                 | Box 5               | 150.4 | 156.0 | SP-SM             | х                         |                     |                  | х    | х      |
| DCA-DH-054                 | Box 1               | 99.5  | 105.3 | SM                | х                         |                     |                  | х    | х      |
| DCIF-DH-015                | Box 5               | 110.7 | 116.0 | SM                | х                         |                     |                  | х    | х      |
| DCRA-DH-007                | Box 1               | 101.5 | 117.7 | SM                | х                         |                     |                  | х    | х      |
| DCA-DH-024                 | Box 6               | 142.0 | 143.5 | VP                |                           | x                   | Х                |      | х      |
| DCA-DH-014                 | Box 6               | 130.0 | 132.0 | VP                |                           | x                   | Х                |      | x      |
| DCN4-DH-034                | Box 2               | 138.0 | 141.3 | VP                |                           | x                   | X                |      | х      |
| DCRA-DH-005                | Box 13              | 186.9 | 187.7 | VP                |                           | x                   | Х                |      | х      |
| WFT-DH-002                 | Box 16              | 228.0 | 232.0 | VP                |                           | x                   | X                |      | х      |
| DCE-DH-003                 | Box 3               | 145.3 | 148.5 | SP                |                           |                     | X                | х    |        |
| DCE-DH-003                 | Box 4               | 165.3 | 167.0 | МН                |                           |                     | X                | х    |        |
| DCE-DH-004                 | Box 3               | 142.5 | 146.0 | CL                |                           |                     | X                | х    |        |
| DCE-DH-005                 | Box 3               | 162.8 | 163.6 | SM                |                           |                     | X                | x    |        |
| DCE-DH-005                 | Box 4               | 166.5 | 168.5 | SM                |                           |                     | X                | x    |        |
| DCRA-DH-004                | Box 4               | 142.0 | 144.0 | (CL)s             |                           |                     | X                | x    |        |
| DCRA-DH-004                | Box 6, 7            | 162.5 | 164.5 | s(ML)             |                           |                     | X                | x    |        |
| DCBF-DH-018                | P32A                | 157.0 | 157.5 | SM                |                           |                     | X                | x    |        |
| DCBF-DH-018                | P33A                | 162.5 | 163.0 | SP-SM             |                           |                     | X                | x    |        |
| DCBF-DH-021                | S19A                | 108.0 | 109.5 | (CL)s             |                           |                     | X                |      | x      |
| DCRA-DH-006                | S26A                | 163.0 | 164.5 | SP-SM             |                           |                     | X                |      | x      |
| DCR-DH-010                 | P27A                | 149.0 | 149.5 | ML                |                           |                     | X                |      | x      |
| DCR-DH-010                 | P29A                | 159.0 | 159.5 | SC                |                           |                     | X                |      | x      |

Notes:

<sup>1</sup> Sample will be taken from depth range, exact depth will be determined after weighing 2kg from range.

<sup>2</sup> Unified Soil Classification System, Appendix A-D (DWR, 2013), Appendix E (DWR, 2018).

<sup>3</sup> Confirmatory samples will be used to compare results against previously tested samples.

<sup>4</sup> Samples containing tephra (volcanic ash) will be tested to investigate abrasion potential, as determined by (Maier, K.L., et al., 2015).

<sup>5</sup> Samples from new borings will be tested to investigate the tunnel horizon along the eastern corridor as defined in the NOP and near the southern forebay.



CSM SAT Pricing



# EARTH MECHANICS INSTITUTE

Colorado School of Mines 1312 Maple Street, Golden, CO - 80401. USA. +1 (303) 273-3123 emi@mines.edu



QUOTE =

|          | stomer —          |                |         |               |       | Quote #:   | Q-107       |
|----------|-------------------|----------------|---------|---------------|-------|------------|-------------|
| Company: | Delta Conveyano   | ce Design & Co | onstruc | tion Authorit | y     | Date:      | 2/14/2020   |
| Name:    | John Hinton       |                |         |               |       | EMI #:     |             |
| Address: | 1121 L Street, Su | uite 1045      |         |               |       | Project #: |             |
| City:    | Sacramento        | State:         | CA      | Zip:          | 95814 | Project    | SAT Testing |
| Phone:   |                   | Cell:          | 916-35  | 52-8455       |       | Name:      | SATTESING   |
| e-mail:  | JohnHinton@dc     | dca.org        |         |               |       | Ref:       |             |
| CC:      |                   |                |         |               |       |            |             |

| #              | Test Type          | Unit Price              | Quantity       | Line Total                |
|----------------|--------------------|-------------------------|----------------|---------------------------|
| <u></u> #<br>1 | SINTEF Testing SAT | Unit Price<br>\$ 650.00 | Quantity<br>15 | Line Total<br>\$ 9,750.00 |
|                |                    |                         |                | <b>^</b>                  |
|                |                    | lot                     | ai (in USD)    | ə 9,750.00                |

**Quotation Details** 

\*\*\*



NTNU SAT Pricing



### DELTA Conveyance Design and Construction AUTHORITY 1121 L St, Sacramento CA 95814 USA

#### SINTEF Byggforsk SINTEF Building and Infrastructure

Postboks 4760 Sluppen NO-7465 Trondheim NORWAY Location: Sem Sælands vei 1 7034 Trondheim

Direct line: +47 93015284 Telefax: +47 73593380

Enterprise /VAT No: NO 948 007 029 MVA

**Your ref.** John Hinton **Our ref.** Filip Dahl Project No. / File code 102022149/SAT **Date** 2020-02-14

### **Quotation for determination of soil abrasivity properties**

Thank you very much for your inquiry regarding laboratory testing for determination of soil abrasivity properties by the Soil Abrasiveness Test<sup>™</sup> (SAT<sup>™</sup>). The unit price (one sample) and the required sample amount are given in the following table:

| Item                                                                                                                                                                                                                                                              | Unit cost<br>(one sample) | Required sample<br>amount                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------|
| <b>Soil Abrasiveness Test™ (SAT™)</b> <sup>1</sup> in accordance with "Nilsen,<br>B., Dahl, F., Holzhäuser, J. and Raleigh, P. (2007): "New test<br>methodology for estimating the abrasiveness of soils for TBM<br>tunnelling", RETC Proceedings, pp. 104 - 116. | USD 565                   | <b>1 - 2 kg</b> <sup>1</sup><br>Representative<br>soil sample. |

<sup>1</sup> The amount should be somewhat increased (3 - 4 kg) if the soil sample consist of a major part of particles > 4.0 mm.

Prices given in USD are according to the current currency situation and will be valid until 2020-12-31.

An Administration fee of USD 200 will be added to the total testing cost.

The listed prices for testing include preparation and reporting. The Final Test Report will be provided as an electronically mailed version in PDF format. Hard copies can be provided at an additional cost.

When SINTEF AS executes physical tests of samples, products or analyses of tests performed by others in a Norwegian Laboratory the Norwegian VAT Act states that these services are to be invoiced with VAT. **According to the VAT-Act there will be invoiced 25% VAT**. Please note that foreign businesses might be entitled to refund of input VAT when purchasing goods or services in Norway, provided that certain conditions are fulfilled. Further information about the conditions and how to apply for VAT refund can be found in the attached information letter from our VAT lawyer and the information web-site from Norwegian VAT authorities <u>https://www.skatteetaten.no/en/business-and-organisation/vat-and-duties/vat/refund-of-vat-to-foreign-businesses/</u>.

According to the provided unit prices the total cost for the requested laboratory testing and reporting will be:

| 15 x SAT™              | USD | 8 475 |
|------------------------|-----|-------|
| 1 x Administration fee | USD | 200   |
| Total                  | USD | 8 675 |

 PROJECT NO. / FILE CODE
 1 of 2

 102022149/SAT
 1 of 2



The laboratory work performed at SINTEF will be conducted in accordance with the terms specified in the attached "SINTEF - General conditions for smaller projects".

SINTEF shall submit invoices in good order and in English language upon completion of the testing, ev. divided into several invoices if several test rounds will apply.

Payment is according to the specified term expected within 30 days from receipt of the original Invoice.

The specified laboratory work will start as soon as we have received the samples and a written confirmation with reference to this quotation.

The samples should be clearly marked and wrapped individually before shipping (preferably by DHL, FedEx or similar) to the following address:

Rock Laboratory SINTEF/NTNU S.P. Andersens vei 13A 7031 Trondheim NORWAY Att: Filip Dahl (cell phone + 47 93 01 52 84)

Please specify that the shipment contains samples of geological material (clay, silt, sand, gravel) from a tunnel project and that they are intended for laboratory testing. Please note that using the term "soil" should be avoided when shipping samples to Norway due to that it can be mistaken for top-soil/garden mold, which is illegal to import without a dispensation from the Norwegian Food Safety Authority. It should further be stated that the samples are of no commercial value instead of listing the actual value of testing on the Pro-forma invoice, as this will make the clearance through the Norwegian customs more convenient.

The time schedule for the requested laboratory testing will somewhat depend on our current workload on receipt of the samples. Testing of the specified number of samples is however, normally completed within 2 - 3 weeks after the receipt of the samples. Final Test Report is due 1 week after the completion of the laboratory testing.

Preliminary test results are however normally available and reported earlier than the given time schedule.

Please do not hesitate to contact us if you should have any questions regarding the quotation.

Yours sincerely SINTEF Community Rock and Soil Mechanics

Filip Dahl Professional and Market Head Engineering Geology Lab Lisbeth I. Alnæs Research Manager