

Subject:	Soil Balance and Reusable Tunnel Material Supplement – Bethany Reservoir Alternative (Final Draft)
Project feature:	Tunnels and Shafts
Prepared for:	California Department of Water Resources (DWR) / Delta Conveyance Office (DCO)
Prepared by:	Delta Conveyance Design and Construction Authority (DCA)
Copies to:	File
Date/Version:	May 27, 2022
Reference no.:	EDM_TS_CE_TMO_Soil-Balance-and-RTM-Bethany_001093_V03_FD_20220527

1. Purpose

The Delta Conveyance Project (project) would include new intake facilities located along the Sacramento River between the confluences of the American River and Sutter Slough, a tunnel to convey water from the intakes to the southern end of the Delta, and a pumping plant with associated facilities to deliver water to the existing State Water Project (SWP) and potentially the Central Valley Project (CVP) conveyance and distribution systems.

Two tunnel alignments have previously been analyzed, the Central and Eastern corridors, which are now being supplemented to include the Bethany Reservoir Alternative. The subjects of a project-wide soil balance and the properties and reuse opportunities of the reusable tunnel material (RTM) were evaluated for the Central and Eastern corridors as documented in two separate technical memoranda (TMs):

- Soil Balance TM (DCA 2021a) Assesses the needs and sources for soil across the project.
- Reusable Tunnel Material TM (DCA 2021b) Evaluates the properties of the RTM and for each project design capacity, calculates the expected quantity of RTM, understands the requirements for processing the RTM, estimates the area required for temporary and permanent storage of RTM, and determines where the RTM will be generated. The TM also describes potential health and environmental considerations associated with the extracting, processing and storing of RTM.

The Bethany Reservoir Alternative alignment is similar to the Eastern corridor alignment from the intake sites along the Sacramento River to the Lower Roberts Island site. From there, the Bethany Reservoir Alternative alignment diverges south from the Eastern Corridor to maintenance shafts on Upper Jones Tract and Union Island, and then terminates a tunnel reception shaft at the Bethany Reservoir Pumping Plant (BRPP) and Surge Basin located on the south side of Byron Highway on Mountain House Road (Attachment 1). The Bethany Reservoir Alternative does not include a Southern Forebay and would instead deliver project water directly to the SWP's existing Bethany Reservoir. The Twin Cities Complex (TCC) and Lower Roberts Island sites were reconfigured for the Bethany Reservoir Alternative, as compared to the Eastern Corridor, to accommodate changes in RTM processing and handling and the use of only two tunnel launch locations for the entire project. Both the TCC and Lower Roberts Island sites would be used as double-launch locations for tunnel boring machines (TBMs) boring in two directions.

The supplemental evaluation of the soil balance and RTM for the Bethany Reservoir Alternative considers a range of tunnel internal diameters (IDs) that would vary between 26 feet and 40 feet, depending on the project design capacity. Based on the range of potential tunnel diameters, the excavated volume of RTM from tunnel construction could vary between 7.2 and 19.2 million cubic yards. As discussed, the Bethany

Reservoir Alternative does not include a Southern Forebay to consume large quantities of suitable RTM, and the surplus stockpiles of material generated as part of the project would generally occur at two permanent locations: (1) TCC and (2) Lower Roberts Island. This differs from the Central and Eastern corridors in that three tunnel launch sites were assumed for those alternatives and a significant quantity of the RTM was used to construct embankments for the Southern Forebay at the south end of the project.

The purpose of this TM is to supplement the previously prepared *Soil Balance TM* and *Reusable Tunnel Material TM* (DCA 2021a; 2021b, respectively) to include additional discussion specific to the Bethany Reservoir Alternative. This supplemental TM is split into two main sections: Section 2 addresses soil balance supplemental information; and Section 3 addresses the RTM supplemental information. This TM provides an overview of the approaches to these items, but additional detail is included in the *Soil Balance TM* and *Reusable Tunnel Material TM* (DCA 2021a; 2021b, respectively).

1.1 Organization

This TM is organized as follows:

- Soil Balance
- Reusable Tunnel Material
- References
- Document History and Quality Assurance

2. Soil Balance

2.1 Background

A project wide assessment and soil balance model (Model) was prepared to understand and improve the balance of the total amount of soil fill material required and produced at the various project construction sites. The Model analyzes soil fill material, including structural and nonstructural fill, topsoil, peat, and specialty materials including filter sand or riprap, as described in the following subsections. The Model does not include other construction materials, such as concrete and asphalt.

An inventory was performed for each construction site to compile fill requirements and soil generation rates and volumes associated with various earthwork activities. The key construction sites considered in the Model for the Bethany Reservoir Alternative include:

- Intakes
- Tunnels, portals, and shafts
- BRPP and Surge Basin
- Aqueduct from the BRPP to Bethany Reservoir
- Bethany Reservoir Discharge Structure
- Pipeline and discharge structure at CVP Project Delta Mendota Canal (for the 7,500-cubic-foot-persecond cfs project design capacity only)

The schedule for each activity was applied based on the project schedule and the duration of the construction activities (DCA 2021c). The soil balances were analyzed with respect to:

- Bank Cubic Yards (BCY): pre-excavation in-situ soil volumes.
- Loose Cubic Yards (LCY): bulk material placed or piled after excavation; referred to as "Wet Excavated" in the RTM calculation attachments.

• **Compact Cubic Yards (CCY):** compacted volumes created by the construction equipment activities; referred to as "Dry Compacted" in the RTM calculation attachments.

The volumes of excavated materials were estimated in BCY (the volume of material being excavated). The BCY values were converted to LCY using a bulking factor to assess volumes for transportation and/or storage needs. The CCY values were calculated using compaction factors to calculate fill needs throughout the project. The methods for converting soil volumes for BCY, LCY, and CCY are further discussed in the following sections.

2.2 Methodology and Assumptions

The Model includes a sitewide inventory of the fill needs of each of the project features (such as intakes and shafts), and of the source material generated by each of the project features from earthwork activities. The Model calculates the needs and potential sources of material, including both on-site and import material, on a quarterly basis.

Peat and topsoil would be excavated and stored locally. Excavated peat soil would be placed in stockpiles and covered with five feet of topsoil to limit oxidation of the organic peat material. The quantities of excavated peat and topsoil were estimated for each site based available and the engineering concept drawings and included in the Model as shown for the various construction sites to identify the volume, storage height, and storage area (acres), as well as the expected stockpile duration (for temporary stockpiles) and the locations of permanent stockpiles.

The soil balance generally excludes consideration of fills required for road and railroad construction or modifications (including, road widening, realignment at interchanges), since the majority of these materials are specialty imports that cannot be sourced within the project.

2.2.1 Bulking and Compaction Factors

The bulking and compaction factors used to convert in situ material to compacted volumes for use on-site or loose volumes for stockpiling are consistent with what is presented in the Soil Balance TM (DCA 2021a) and are summarized in Table 2-1.

Table 2-1. Bulking and Compaction Factors

Summary of bulking and compaction factors for different project features

Feature/Material	BCY to LCY (Bulking)	BCY to CCY (Compaction)
Intakes	1.3	0.95
Shafts	1.3	0.9
Levees	1.3	0.9
Logistics (Roads, Park-and-Ride)	1.3	0.9
RTM	1.3	0.99ª
Clay (Damp) imported from Commercial Sources ^b	1.4	0.9
Gravel (Dry) imported from Commercial Sources ^b	1.15	0.93
Silt imported from Commercial Sources**	1.36	0.83

^a includes 5% reduction in volume due to drying

^b Source: Church, Horace K. Excavation Handbook. McGraw-Hill, 1981.

2.2.2 Intake Assumptions

The Model assumptions for the intakes are consistent with those presented in the Soil Balance TM (DCA 2021a). No further discussion of soil balance considerations or findings related to the intakes are included in this supplemental TM.

2.2.3 Shaft Assumptions

The Model assumes that the shaft pads would be constructed with fill provided from within the project. The excavation of shafts would generate excess material that would be permanently stockpiled locally except at launch shafts where shaft excavation soil would be combined with RTM stockpiles. Topsoil stripped from the site or peat excavated from the shaft would be used for re-establishing vegetation at the site for post-construction erosion control.

It was assumed that fill material would be provided from the TCC for construction of the following shaft pads:

- Twin Cities
- New Hope Tract
- Canal Ranch Tract
- Terminous Tract
- King Island

It was assumed that excavated soil from Lower Roberts Island would be used to construct shaft pads at Upper Jones Tract and Union Island.

A shaft pad would not be required at the surge basin reception shaft since natural ground elevations at this site are considerably above the potential flood stage.

Upon stripping of topsoil and peat, soil fill for shaft pads would initially be sourced by excavation of borrow at the TCC or Lower Roberts Island. Onsite borrow areas would eventually be backfilled with RTM from the co-located tunnel launch shaft operations. Based upon the Model input information, maximum borrow excavation depths would be approximately 10 feet at the TCC over 40 acres, and 10 feet at Lower Roberts Island over 26 acres.

The Bethany Reservoir Alternative soil balance did not require changes to the Model inputs or assumptions for shafts at New Hope Tract, Canal Ranch Tract, Terminous Tract, or King Island. No further discussion of soil balance considerations or findings related to these unchanged shafts are included in this supplemental TM.

2.2.4 Levee Assumptions

The Model assumes the Twin Cities Ring Levee would be constructed using excavated soil from the TCC. The Model also assumes modifications to existing levees on Lower Roberts Island would be constructed using excavated materials from Lower Roberts Island.

The approach to RTM processing and management for the Bethany Reservoir Alternative assumes no mechanical or rapid drying is required, since there are no structural reuses of RTM planned for the project. As a result, the size of the TCC was increased to accommodate the larger space requirements associated with the natural "No Drying" approach to RTM management (refer to Section 3), which then requires a

larger quantity of locally borrowed fill to construct the ring levee around the enlarged site. The updated quantities are reflected in the TCC soil balance summary tables included later in this section.

No changes were required to the levee repair quantities on Lower Roberts Island for the Bethany Reservoir Alternative.

2.2.5 Bethany Reservoir Pumping Plant and Surge Basin Assumptions

The BRPP and Surge Basin are below grade structures, which only require minimal quantities of fill associated with surface grading and leveling, construction of the access ramp into the interior of the surge basin and backfill behind walls of the pumping plant. As such, these structures will generate significant excess quantities of soil that will be permanently stockpiled locally. Peat soils in the foundation are not anticipated based on known information.

2.2.6 Bethany Reservoir Aqueduct and Bethany Reservoir Discharge Structure Assumptions

The Model assumes soil excavated from the Aqueduct cuts, tunnel portals, tunnels, Bethany Reservoir Discharge Structure and associated shafts, and the Jones Discharge and Delta-Mendota Canal (DMC) Control Structures will be reusable as structural fill (excluding topsoil stripping), as needed. A majority of the soil excavated for the Aqueduct and associated tunnels and portals would be reused for production of controlled low-strength material (CLSM), which would be used as backfill around the below grade portion of the Aqueduct pipelines and for soil backfill above the CLSM. The annulus between the shafts at the Bethany Reservoir Discharge Structure and the Aqueduct pipes was also assumed to be backfilled with CLSM. The remaining soil would be consolidated into the permanent stockpiles surrounding the BRPP or on the western side of the DMC (for the 7,500-cfs project design capacity only).

2.2.7 RTM Assumptions

Section 3 describes RTM generation, location, timing, and quantities for the Bethany Reservoir Alternative. These details are imported directly into the Model, with the following assumptions:

• Approximately 20 percent of the RTM volume generated at the tunnel launch shafts at Lower Roberts Island would not be included in the estimate of the height of the above grade permanent stockpile because the stockpiled soil would settle during drying operations.

For the Central and Eastern corridor options, 5 percent of the generated RTM was assumed to be unsuitable for reuse as described in the Soil Balance TM (DCA 2021a). This 5 percent was included in the stockpile volumes. This assumption was relevant to the Central and Eastern corridor options because there was a significant reliance on RTM for the construction of the Southern Forebay embankment and it was appropriate to assume some portion would not be suitable for construction when assessing the project-wide soil balance. For the Bethany Reservoir Alternative, no significant reuse of RTM for structural fill is planned for the Bethany Reservoir Alternative resulting in all of the RTM generated being stockpiled.

2.3 Temporary and Permanent Stockpiles

Peat and topsoil would be excavated and stored at several locations as temporary or permanent stockpiles. Excess excavated soil from construction of the surge basin, BRPP, and Aqueduct would also be stored as permanent stockpiles at the Bethany Complex. "Temporary" stockpiles refer to a period equal to, or less than, the construction period at an individual site, whereas "permanent" stockpiles indicate the

stockpile would exist beyond the end of the construction period and would be considered a permanent long-term element of the site.

Information for the construction sites regarding the anticipated stockpile volume, height, and area, as well as the expected stockpile duration (for temporary stockpiles), and the locations of permanent stockpiles are summarized in Table 2-2 (refer to Section 3.4 for information regarding RTM storage). The stripping quantities and peat quantities for the TCC and Lower Roberts Island launch sites are based on the 6,000-cfs configuration and do not capture the relatively minor differences in shaft excavation quantity or topsoil generated due to stripping for the range of potential project flows, since the material would be completely reused onsite and does not represent a permanent element of the site.

Note, Table 2-2 only includes sites that are new or altered for the Bethany Reservoir Alternative from those described in the Soil Balance TM (DCA 2021a). Refer to that TM for the remaining peat and topsoil stockpile details that were unchanged for the Bethany Reservoir Alternative as compared to the Eastern Corridor (including discussions of the intakes and the shaft pads at New Hope Tract, Canal Ranch Tract, Terminous Tract, and King Island).

The stockpile heights in Table 2-2 include an allowance to account for the effects of stockpile side slopes on the overall size. An allowance of 5% was used for shorter stockpiles (less than approximately 20 feet tall) and an allowance of 10% was used for taller stockpiles (greater than approximately 20 feet tall). The stockpiles on the west side of the DMC (for the 7,500-cfs project design capacity only) will be placed against the existing stockpile slope and as result will not include an additional allowance for side slopes.

Feature	Material	Volume*	Stockpile Duration (years)	Stockpile Area (Acres)	Stockpile Height (ft)
Twin Cities Complex (3000 cfs)	Topsoil	685,828	10	25.0	19
Twin Cities Complex (4500 cfs)	Topsoil	816,387	10	25.0	22
Twin Cities Complex (6000 cfs)	Topsoil	910,767	10	25.0	25
Twin Cities Complex (7500 cfs)	Topsoil	910,767	10	25.0	25
	Topsoil	376567		24.5	15
Lower Roberts Island (3000 cfs)	Peat	14,962	9	24.5	6
	Topsoil	470251		30.6	15
Lower Roberts Island (4500 cfs)	Peat	14,962	9		6
	Topsoil	537949		35	15
Lower Roberts Island (6000 cfs)	Peat	16,169	9	35	7
Lower Roberts Island (7500 cfs)	Topsoil	537949	9	35.0	15
	Peat	17,129			7
	Topsoil	12,060		1.0	9
Upper Jones Tract (3000 cfs)	Peat	1,940	1		
	Excavated Material	21,761	Permanent	3.1	4
Upper Jones Tract (4500 cfs)	Topsoil	12,060	1	1.0	9

Table 2-2. Stockpile Summary-Bethany Alignment

Cummarizes the temperar	wand normanon	t noat toncoil	and averyate	d matarial staduailas
Summarizes the temporar	v ana permanen	11 DEAL 1005011	. and excavare	a material stockolles –
	,			

Table 2-2. Stockpile Summary-Bethany Alignment

Summarizes the temporary and permanent peat, topsoil, and excavated material stockpiles

Feature	Material	Volume*	Stockpile Duration (years)	Stockpile Area (Acres)	Stockpile Height (ft)
	Peat	2,557			
	Excavated Material	28,686	Permanent	3.1	6
	Topsoil	12,060	_	1.0	9
Upper Jones Tract (6000 cfs)	Peat	3,040	1		
	Excavated Material	34,102	Permanent	3.1	7
	Topsoil	12,060	1	1.0	10
Upper Jones Tract (7500 cfs)	Peat	3,487			
	Excavated Material	39,117	Permanent	3.1	8
	Topsoil	14,472	2	1.0	10
Union Island (3000 cfs)	Peat	2,120			
	Excavated Material	24,015	Permanent	3.0	5
	Topsoil	14,472	2	1.0	11
Union Island (4500 cfs)	Peat	2,795			
	Excavated Material	31,657	Permanent	3.0	6
	Topsoil	14,472	_	1.0	11
Union Island (6000 cfs)	Peat	33,22	2		
	Excavated Material	37,634	Permanent	3.0	8
Union Island (7500 cfs)	Topsoil Peat	14,472 3,811	2	1.0	11
	Excavated Material	43,168	Permanent	3.0	9
Bethany Reservoir Pumping Plant and Surge	Topsoil	227,561	7	7.1	22
Basin (3,000 cfs)	Excavated Material	2,389,104	Permanent	61.1	27
Aqueduct and Connection to Bethany Reservoir (3,000 cfs)	Topsoil	133,181	2	4.1	22
Discharge Structure (3,000 cfs)	Topsoil	12,899	3	0.4	22
Bethany Reservoir Pumping Plant and Surge	Topsoil	227,561	7	7.1	22
Basin (4,500 cfs)	Excavated Material	2,680,213	Permanent	61.1	30
Aqueduct and Connection to Bethany Reservoir (4,500 cfs)	Topsoil	141,046	3	4.4	22
Discharge Structure (4,500 cfs)	Topsoil	14,367	4	0.4	22
	Topsoil	228,504	7	7.1	22

Table 2-2. Stockpile Summary-Bethany Alignment

Summarizes the temporary and permanent peat, topsoil, and excavated material stockpiles

Feature	Material	Volume*	Stockpile Duration (years)	Stockpile Area (Acres)	Stockpile Height (ft)
Bethany Reservoir Pumping Plant and Surge Basin (6,000 cfs)	Excavated Material	2,871,816	Permanent	59.3	33
Aqueduct and Connection to Bethany Reservoir (6,000 cfs)	Topsoil	144,716	4	4.5	22
Discharge Structure (6,000 cfs)	Topsoil	14,891	5	0.5	22
Bethany Reservoir Pumping Plant and Surge	Topsoil	268,878	7	7.2	26
Basin and CVP Connection East of DMC (7,500 cfs)	Excavated Material	3,536,502	Permanent	59.3	41
Aqueduct and Connection to Bethany Reservoir (7,500 cfs)	Topsoil	144,716	4	4.5	22
Discharge Structure (7,500 cfs)	Topsoil	14,891	5	0.5	22
	Topsoil	41,947	3	1.0	25
CVP Connection West of DMC (7500cfs)	Excavated Material	372,232	Permanent	9.2	25

Notes:

*Peat and Topsoil are reported in LCY as these stockpiles will not be compacted. Excavated material stockpiles are reported in CCY as these stockpiles will be compacted. Excavated peat soil would be placed in stockpiles and covered with five feet of topsoil to limit oxidation of the organic peat material.

ft = foot (feet)

2.4 Feature Summaries

The Model includes a sitewide inventory for each project feature (such as intakes and shafts) of the fill needs and source material generated from earthwork activities, except for road and railroad fill requirements. Road and railroad fill will generally be specialty base materials that will not be generated onsite and are not included in the Model.

The Model treats all source material (i.e. generated by onsite excavation) as a positive quantity. Conversely, it treats all material needs as a negative quantity. To account for any surplus material (material generated in excess of the identified needs), the Model introduces surplus stockpiles as a "need" that consumes any surplus material not consumed by the other identified needs of the project at that feature; therefore, the surplus stockpiles are treated as a negative quantity.

Results of the soil balance are provided for all project design capacities in the following sections. For each project design capacity there are a series of tables that summarize the fill need volumes, sources, and remnant quantities for each feature.

Note, the following summaries only include sites that are new or altered for the Bethany Reservoir Alternative. Refer to the Soil Balance TM (DCA 2021a) for the soil balance summaries that were unchanged for the Bethany Reservoir Alternative as compared to the Eastern Corridor, which include the intakes and the shaft pads at New Hope Tract, Canal Ranch Tract, Terminous Tract, and King Island.

2.4.1 Bethany Reservoir Alternative with Project Design Capacity of 6,000 cfs

Tables 2-3 to Table 2-8 present the results of the soil balance for each feature and summarize the fill needs and material sources.

Needs	Volume (CCY) ^a	
Twin Cities Shaft-Pad	Onsite	-83,168
Twin Cities Ring Levee	Onsite	-262,859
Restore Topography from Twin Cities Shaft Pad Borrow	Onsite	-92,409
Restore Topography from Twin Cities Ring Levee Borrow	Onsite	-292,065
Restore Topography from New Hope Borrow	Export	-35,386
Restore Topography from Canal Ranch Borrow	Export	-31,922
Restore Topography from Terminous Borrow	Export	-70,233
Restore Topography from King Borrow	Export	-87,176
Sources		Volume (CCY) ^a
Twin Cities Shaft Pad Borrow from TCC	Onsite	83,168
Twin Cities Ring Levee Borrow from TCC	Onsite	262,859
Twin Cities Ring Levee Degrade/Stockpile	Onsite	262,859
Twin Cities Shaft Excavation	Onsite	186,308
TCC RTM	Onsite	5,111,861
Material Export/Reuse	Volume (CCY) ^a	
Stockpile of Twin Cities Levee Degrade	Onsite	-262,859
Surplus RTM Stockpile at Twin Cities	Onsite	-4,688,978

Table 2-3. Twin Cities Complex (6,000-cfs Project Design Capacity)

^a All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

Table 2-4. Lower Roberts Island (6,000-cfs Project Design Capacity)

Needs	Volume (CCY) ^a	
Lower Roberts Island Shaft-Pad	Onsite	-212,250
Lower Roberts Island Levee	Onsite	-39,424
Restore Topography from Lower Roberts Island Shaft Pad Borrow	Onsite	-235,833
Restore Topography from Lower Roberts Island Levee Borrow	Onsite	-43,804
Restore Topography from Upper Jones Tract Shaft Pad Borrow	Export	-60,883
Restore Topography from Union Island Shaft Pad Borrow	-55,223	
Sources	Volume (CCY) ^a	

Table 2-4. Lower Roberts Island (6,000-cfs Project Design Capacity)

Needs	Volume (CCY) ^a	
Lower Roberts Island Shaft Pad Borrow from Lower Roberts Island	Onsite	212,250
Lower Roberts Island Levee Borrow from Lower Roberts Island	Onsite	39,424
Lower Roberts Island Shaft-Excavation	Onsite	178,291
Lower Roberts Island RTM	Onsite	4,680,976
Material Export/Reuse	Volume (CCY) ^a	
Surplus RTM at Lower Roberts Island	Onsite	-4,463,523

^a All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

Table 2-5. Upper Jones Tract (6,000-cfs Project Design Capacity)

Needs		Volume (CCY) ^a
Upper Jones Tract Shaft-Pad	Onsite	-54,795
Sources		Volume (CCY) ^a
Upper Jones Tract Shaft Pad Borrow from Lower Roberts Island	Import	54,795
Upper Jones Tract Shaft-Excavation	Onsite	34,102
Material Export/Reuse		Volume (CCY) ^a
Upper Jones Tract Shaft-On Site Stockpile	Onsite	-34,102

Table 2-6. Union Island (6,000-cfs Project Design Capacity)

Needs	Volume (CCY) ^a	
Union Island Shaft-Pad Onsite		-49,701
Sources	Volume (CCY) ^a	
Union Island Shaft Pad Borrow from Lower Roberts Island	Import	49,701
Union Island Shaft-Excavation	Onsite	37,634
Material Export/Reuse	Volume (CCY) ^a	
Union Island Shaft-On Site Stockpile	Onsite	-37,634

^a Note: All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

Table 2-7. Bethany Res	servoir Pumping Plant and	Surge Basin (6,000-cfs	Project Design Capacity)
------------------------	---------------------------	------------------------	--------------------------

Needs		Volume (CCY) ^a
Surge Basin-Access Ramp Free Draining Backfill	Onsite	-10,083
Bethany Pumping Plant-Site Grading	Onsite	-7,121
Sources		Volume (CCY) ^a
Surge Basin-Shaft	Onsite	39,399
Surge Basin-Excavation	Onsite	934,835
Surge Basin-Drilled Shafts	Onsite	151,016
Surge Basin-Diaphragm Walls	Onsite	45,810
Bethany Pumping Plant	Onsite	1,270,298
Surge Basin-Access Ramp Free Draining Backfill	Import	10,083
Material Export/Reuse		Volume (CCY) ^a
Surge Basin-On Site Stockpile	Onsite	-2,434,237

Table 2-8. Bethany Reservoir Aqueduct and Bethany Reservoir Discharge Structures 6,000-cfsProject Design Capacity)

Needs		Volume (CCY) ^a
Bethany Pump Station to Bethany Reservoir Onsite		-1,257,486
Sources		Volume (CCY) ^a
Bethany Pump Station to Bethany Reservoir Excavation Onsite		1,695,064
Material Export/Reuse		Volume (CCY) ^a
Bethany Pump Station to Bethany Reservoir Surplus	Onsite	-437,578

^a All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

2.4.2 Bethany Reservoir Alternative with Project Design Capacity of 3,000 cfs

Tables 2-9 to Table 2-14 provide the results of the soil balance for each feature and summarize the fill needs and material sources.

Needs		Volume (CCY) ^a
Twin Cities Shaft-Pad	Onsite	-81,312
Twin Cities Ring Levee	Onsite	-230,450
Restore Topography from Twin Cities Shaft Pad Borrow	Onsite	-90,347
Restore Topography from Twin Cities Ring Levee Borrow	Onsite	-256,055
Restore Topography from New Hope Borrow	Export	-30,835
Restore Topography from Canal Ranch Borrow	Export	-27,769
Restore Topography from Terminous Borrow	Export	-63,015
Restore Topography from King Borrow	Export	-77,291
Sources		Volume (CCY) ^a
Twin Cities Shaft Pad Borrow from TCC	Onsite	81,312
Twin Cities Ring Levee Borrow from TCC	Onsite	230,450
Twin Cities Ring Levee Degrade/Stockpile	Onsite	230,450
Twin Cities Shaft Excavation	Onsite	172,410
TCC RTM	Onsite	2,366,209
Material Export/Reuse		Volume (CCY) ^a
Stockpile of Twin Cities Levee Degrade	Onsite	-230,450
Surplus RTM Stockpile at Twin Cities	Onsite	-1,993,307

Table 2-9. Twin Cities Complex (3,000-cfs Project Design Capacity)

Needs		Volume (CCY) ^a
Lower Roberts Island Shaft-Pad	Onsite	-207,896
Lower Roberts Island Levee	Onsite	-39,424
Restore Topography from Lower Roberts Island Shaft Pad Borrow	Onsite	-230,996
Restore Topography from Lower Roberts Island Levee Borrow	Onsite	-43,804
Restore Topography from Upper Jones Tract Shaft Pad Borrow	Export	-53,585
Restore Topography from Union Island Shaft Pad Borrow	Export	-48,511
Sources		Volume (CCY) ^a
Lower Roberts Shaft Pad Borrow from Lower Roberts Island	Onsite	207,896
Lower Roberts Levee Borrow from Lower Roberts Island	Onsite	39,424
Lower Roberts Island Shaft-Excavation	Onsite	164,991
Lower Roberts Island RTM	Onsite	2,468,189
Material Export/Reuse		Volume (CCY) ^a
Surplus RTM at Lower Roberts Island	Onsite	-2,256,284

Table 2-10. Lower Roberts Island (3,000-cfs Project Design Capacity)

^a All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

Table 2-11. Upper Jones Tract (3,000-cfs Project Design Capacity)

Needs		Volume (CCY) ^a
Upper Jones Tract Shaft-Pad	Onsite	-48,226
Sources		Volume (CCY) ^a
Upper Jones Shaft Pad Borrow from Lower Roberts Island	Import	48,226
Upper Jones Tract Shaft-Excavation	Onsite	21,761
Material Export/Reuse		Volume (CCY) ^a
Upper Jones Tract Shaft-On Site Stockpile	Onsite	-21,761

^a All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

Table 2-12. Union Island (3,000-cfs Project Design Capacity)

Needs		Volume (CCY) ^a
Union Island Shaft-Pad Onsite		-43,660
Sources		Volume (CCY) ^a
Union Island Shaft Pad Borrow from Lower Roberts Island	Import	43,660
Union Island Shaft-Excavation	Onsite	24,015
Material Export/Reuse		Volume (CCY) ^a
Union Island Shaft-On Site Stockpile	Onsite	-24,015

Needs		Volume (CCY) ^a
Surge Basin-Access Ramp Free Draining Backfill	Onsite	-10,083
Bethany Pumping Plant-Site Grading	Onsite	-7,121
Sources	Sources	
Surge Basin-Shaft	Onsite	39,399
Surge Basin-Excavation	Onsite	934,835
Surge Basin-Drilled Shafts	Onsite	151,016
Surge Basin-Diaphragm Walls	Onsite	45,810
Bethany Pumping Plant	Onsite	948,122
Surge Basin-Access Ramp Free Draining Backfill	Import	10,083
Material Export/Reuse		Volume (CCY) ^a
Surge Basin-On Site Stockpile	Onsite	-2,112,061

Table 2-13. Bethany Reservoir Pumping Plant and Surge Basin (3,000-cfs Project Design Capacity)

^a All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

Table 2-14. Bethany Reservoir Aqueduct and Bethany Reservoir Discharge Structures (3,000-cfs Project Design Capacity)

Needs		Volume (CCY) ^a
Bethany Pump Station to Bethany Reservoir	Onsite	-593,662
Sources		Volume (CCY) ^a
Bethany Pump Station to Bethany Reservoir Excavation	Onsite	870,705
Material Export/Reuse		Volume (CCY) ^a
Bethany Pump Station to Bethany Reservoir Surplus	Onsite	-277,043

^a All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

2.4.3 Bethany Reservoir Alternative with Project Design Capacity of 4,500 cfs

Tables 2-15 to Table 2-20 provide the results of the soil balance for each feature and summarize the fill needs and material sources.

Table 2-15. Twin Cities Complex (4,500-cfs Project Design Capacity)

Needs		Volume (CCY) ^a
Twin Cities Shaft-Pad	Onsite	-81,312
Twin Cities Ring Levee	Onsite	-238,740
Restore Topography from Twin Cities Shaft Pad Borrow	Onsite	-90,347
Restore Topography from Twin Cities Ring Levee Borrow	Onsite	-265,267
Restore Topography from New Hope Borrow	Export	-33,474

Needs		Volume (CCY) ^a
Restore Topography from Canal Ranch Borrow	Export	-30,177
Restore Topography from Terminous Borrow	Export	-67,214
Restore Topography from King Borrow	Export	-83,034
Sources		Volume (CCY) ^a
Twin Cities Shaft Pad Borrow from TCC	Onsite	81,312
Twin Cities Ring Levee Borrow from TCC	Onsite	238,740
Twin Cities Ring Levee Degrade/Stockpile	Onsite	238,740
Twin Cities Shaft Excavation	Onsite	172,410
TCC RTM	Onsite	3,807,778
Material Export/Reuse		Volume (CCY) ^a
Stockpile of Twin Cities Levee Degrade	Onsite	-238,740
Surplus RTM Stockpile at Twin Cities	Onsite	-3,410,675

^a All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

Table 2-16. Lower Roberts Island	(4.500-cfs Projec	t Design Capacity)
	(4)000 010110jee	C Design Capacity/

Needs		Volume (CCY) ^a
Lower Roberts Island Shaft-Pad	Onsite	-207,896
Lower Roberts Island Levee	Onsite	-39,424
Restore Topography from Lower Roberts Island Shaft Pad Borrow	Onsite	-230,996
Restore Topography from Lower Roberts Island Levee Borrow	Onsite	-43,804
Restore Topography from Upper Jones Shaft Pad Borrow	Export	-57,822
Restore Topography from Union Island Shaft Pad Borrow	Export	-52,407
Sources		Volume (CCY) ^a
Lower Roberts Island Shaft Pad Borrow from Lower Roberts Island	Onsite	207,896
Lower Roberts Island Levee Borrow from Lower Roberts Island	Onsite	39,424
Lower Roberts Island Shaft-Excavation	Onsite	164,991
Lower Roberts Island RTM	Onsite	3,486,816
Material Export/Reuse	·	Volume (CCY) ^a
Surplus RTM at Lower Roberts Island	Onsite	-3,266,778

Table 2-17. Upper Jones Tract (4,500-cfs Project Desig	n Capacity)		
Needs		Volume (CCY) ^a	
Upper Jones Tract Shaft-Pad Onsite		-52,040	
Sources		Volume (CCY) ^a	
Upper Jones Tract Shaft Pad Borrow from Lower Roberts Island	Import	52,040	
Upper Jones Tract Shaft-Excavation	Onsite	28,686	
Material Export/Reuse		Volume (CCY) ^a	
Upper Jones Tract Shaft-On Site Stockpile	Onsite	-28,686	

^a All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

Table 2-18. Union Island (4,500-cfs Project Design Capacity)

Needs		Volume (CCY) ^a	
Union Island Shaft-Pad Onsite		-47,166	
Sources		Volume (CCY) ^a	
Union Island Shaft Pad Borrow from Lower Roberts Island	Import	47,166	
nion Island Shaft-Excavation Onsite		31,657	
Material Export/Reuse		Volume (CCY) ^a	
Union Island Shaft-On Site Stockpile	Onsite	-31,657	

^a All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

Needs		Volume (CCY) ^{1a}	
Surge Basin-Access Ramp Free Draining Backfill	Onsite	-10,083	
Bethany Pumping Plant-Site Grading	Onsite	-7,121	
Sources		Volume (CCY) ^a	
Surge Basin-Shaft	Onsite	39,399	
Surge Basin-Excavation	Onsite	934,835	
Surge Basin-Drilled Shafts	Onsite	151,016	
Surge Basin-Diaphragm Walls	Onsite	45,810	
Bethany Pumping Plant	Onsite	1,147,473	
Surge Basin-Access Ramp Free Draining Backfill	Import	10,083	
Material Export/Reuse		Volume (CCY) ^a	
Surge Basin-On Site Stockpile	Onsite	-2,311,412	

Table 2-19. Bethany Reservoir Pumping Plant and Surge Basin (4,500-cfs Project Design Capacity)

Table 2-20. Bethany Reservoir Aqueduct and Bethany Reservoir Discharge Structures (4,500-cfsProject Design Capacity)

Needs		Volume (CCY) ^a	
Bethany Pump Station to Bethany Reservoir Onsite		-914,742	
Sources		Volume (CCY) ^a	
Bethany Pump Station to Bethany Reservoir Excavation Onsite		1,283,544	
Material Export/Reuse		Volume (CCY) ^a	
Bethany Pump Station to Bethany Reservoir Surplus	Onsite	-368,802	

^a All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

2.4.4 Bethany Reservoir Alternative with Project Design Capacity of 7,500 cfs

Tables 2-21 to Table 2-26 provide the results of the soil balance for each feature and summarize the fill needs and material sources.

Needs		Volume (CCY) ^a
Twin Cities Shaft-Pad	Onsite	-85,044
Twin Cities Ring Levee	Onsite	-262,859
Restore Topography from Twin Cities Shaft Pad Borrow	Onsite	-94,493
Restore Topography from Twin Cities Ring Levee Borrow	Onsite	-292,065
Restore Topography from New Hope Borrow	Export	-37,067
Restore Topography from Canal Ranch Borrow	Export	-33,457
Restore Topography from Terminous Borrow	Export	-72,874
Restore Topography from King Borrow	Export	-90,805
Sources		Volume (CCY) ^a
Twin Cities Shaft Pad Borrow from TCC	Onsite	85,044
Twin Cities Ring Levee Borrow from TCC	Onsite	262,859
Twin Cities Ring Levee Degrade/Stockpile	Onsite	262,859
Twin Cities Shaft Excavation	Onsite	200,746
TCC RTM	Onsite	7,169,540
Sources		Volume (CCY) ^a
Stockpile of Twin Cities Levee Degrade	Onsite	-262,859
Surplus RTM Stockpile at Twin Cities	Onsite	-6,749,524

Table 2-21. Twin Cities Complex (7,500-cfs Project Design Capacity)

Needs		Volume (CCY) ^a
Lower Roberts Island Shaft-Pad	Onsite	-216,648
Lower Roberts Island Levee	Onsite	-39,424
Restore Topography from Lower Roberts Island Shaft Pad Borrow	Onsite	-240,720
Restore Topography from Lower Roberts Island Levee Borrow	Onsite	-43,804
Restore Topography from Upper Jones Tract Shaft Pad Borrow	Export	-63,570
Restore Topography from Union Island Shaft Pad Borrow	Export	-57,696
Sources		Volume (CCY) ^a
Lower Roberts Island Shaft Pad Borrow from Lower Roberts Island	Onsite	216,648
Lower Roberts Island Levee Borrow from Lower Roberts Island	Onsite	39,424
Lower Roberts Island Shaft-Excavation	Onsite	188,887
Lower Roberts Islance RTM	Onsite	5,962,662
Material Export/Reuse		Volume (CCY) ^a
Surplus RTM at Lower Roberts Island	Onsite	-5,745,759

Table 2-22. Lower Roberts Island (7,500-cfs Project Design Capacity)

^a All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

Table 2-23. Upper Jones Tract (7,500-cfs Project Design Capacity)

Needs		Volume (CCY) ^a
Upper Jones Tract Shaft-Pad	Onsite	-57,213
Sources		Volume (CCY) ^a
Upper Jones Tract Shaft Pad Borrow from Lower Roberts Island	Import	57,213
Upper Jones Tract Shaft-Excavation	Onsite	39,117
Material Export/Reuse		Volume (CCY) ^a
Upper Jones Tract Shaft-On Site Stockpile	Onsite	-39,117

Table 2-24. Union Island (7,500-cfs Project Design Capacity)

Needs		Volume (CCY) ^a	
Union Island Shaft-Pad Onsite		-51,926	
Sources		Volume (CCY) ^a	
Union Island Shaft Pad Borrow from Lower Roberts Island	Import	51,926	
Union Island Shaft-Excavation Onsite		43,168	
Material Export/Reuse		Volume (CCY) ^a	
Union Island Shaft-On Site Stockpile	Onsite	-43,168	

^a All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

Table 2-25. Bethany Reservoir Pumping Plant and Surge Basin (7,500-cfs Project Design Capacity)

Needs		Volume (CCY) ^a
Surge Basin-Access Ramp Free Draining Backfill	Onsite	-10,083
Bethany Pumping Plant-Site Grading	Onsite	-7,121
Sources		Volume (CCY) ^a
Surge Basin-Shaft	Onsite	39,399
Surge Basin-Excavation	Onsite	1,216,000
Surge Basin-Drilled Shafts	Onsite	199,903
Surge Basin-Diaphragm Walls	Onsite	52,288
Bethany Pumping Plant	Onsite	1,475,818
Surge Basin-Access Ramp Free Draining Backfill	Import	10,083
Material Export/Reuse		Volume (CCY) ^a
Surge Basin-On Site Stockpile	Onsite	-2,976,287

^a All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

Table 2-26. Bethany Reservoir Aqueduct and Bethany Reservoir Discharge Structure (7,500-cfs Project Design Capacity)

Needs		Volume (CCY) ^a
Bethany Pump Station to Bethany Reservoir	Onsite	-1,257,486
Bethany Pump Station to DMC-East Side of DMC	Onsite	-429,016
Bethany Pump Station to DMC-West Side of DMC	Onsite	-284,709
Sources		Volume (CCY) ^a
Bethany Pump Station to Bethany Reservoir Excavation	Onsite	1,695,064

Table 2-26. Bethany Reservoir Aqueduct and Bethany Reservoir Discharge Structure (7,500-cfs)
Project Design Capacity)

Needs	Volume (CCY) ^a	
Bethany Pump Station to DMC Excavation-East Side of DMC	551,653	
Bethany Pump Station to DMC Excavation-West Side DMC	656,940	
Material Export/Reuse	Volume (CCY) ^a	
Bethany Pump Station to Bethany Reservoir Surplus	Onsite	-437,578
Bethany Pump Station to DMC Surplus-East Side of DMC	Onsite	-122,637
Bethany Pump Station to DMC Surplus-West Side of DMC	Onsite	-372,232

^a All source materials are treated as positive quantities and all material needs and surplus are treated as negative quantities.

3. Reusable Tunnel Material

This section supplements the *Reusable Tunnel Material TM* (DCA 2021b) for the Bethany Reservoir Alternative and provides a brief description of the assumptions and approach used to develop the conclusions. Additional details are included in the *Reusable Tunnel Material TM* (DCA 2021b). Attachment 2 provides a table of inputs and assumptions applied to the investigation. The RTM generation quantities, locations, and schedule described in this section were used in the project wide soil balance discussed in Section 2, which also accounts for surface borrow, shaft excavation quantities, and settlement of RTM stockpiles into the foundation.

Discussions of anticipated geotechnical and geological conditions relative to RTM along the Bethany Reservoir Alternative tunnel alignment are unchanged from the Central and Eastern corridor discussions. As such, refer to the *Reusable Tunnel Material TM* (DCA 2021b) for further discussion about the anticipated geotechnical and geological conditions.

Discussions of the preliminary engineering and environmental properties of the RTM, including effects to health, environment, and ecology for the Bethany Reservoir Alternative tunnel alignment are unchanged from the Central and Eastern corridor discussions. As such, refer to the *Reusable Tunnel Material TM* (DCA 2021b) for further discussion about the preliminary engineering and environmental properties of the RTM.

Note, information included in this supplemental TM is considered preliminary and will be subject to change as the project develops.

3.1 Tunneling

Information regarding tunnel shaft materials and TBM tunneling operations for the Bethany Reservoir Alternative tunnel alignment are unchanged from the Central/Eastern corridor discussions. As such, refer to the Reusable Tunnel Material TM (DCA 2021b) for that information. Information regarding RTM at the various project design capacities, tunnel diameters, tunnel lengths, and associated excavation quantities for the Bethany Reservoir Alternative are summarized below.

3.1.1 Tunnel Diameter

The tunnel diameter is directly related to the project design capacity. For the Bethany Reservoir Alternative, the tunnel diameters developed as part of the project hydraulic analyses (DCA, 2021e) at the four project design capacities under consideration are shown in Table 3-1.

ltem	Project Design	Project Design	Project Design	Project Design
	Capacity = 3,000	Capacity = 4,500	Capacity = 6,000	Capacity = 7,500
	cfs	cfs	cfs	cfs
Tunnel Diameter (ft)	26	31	36	40

Table 3-1. Tunnel Internal Diameters by Project Design Capacities

The required external diameter of the tunnel lining is a function of the required thickness of the tunnel lining which is directly related to the internal diameter. These have been determined based on experience with similar diameter tunnel projects in similar ground conditions and are shown for each tunnel diameter in Table 3-2 and explained in further detail in the *Tunnel Lining Sizing Evaluation TM* (DCA 2021d). In addition to the tunnel lining thickness, the TBM shield thickness and radial overcut, in reference to the tunnel lining radius, needs to be accounted for to determine the excavated volume. These are also shown in Table 3-2.

For this TM, the four possible tunnel diameters (Table 3-1) have been considered and a resulting range of RTM volumes was developed. Table 3-2 presents the assumptions and resulting cutterhead/excavated area for each of the four internal tunnel diameters.

Tunnel lining internal diameter (ft)	26.0	31.0	36.0	40.0
Project Design Capacity (cfs)	3,000	4,500	6,000	7,500
Lining thickness (in)	14.0	16.0	18.0	24.0
Tunnel lining external diameter (ft)	28.3	33.7	39.0	44.0
TBM tail can thickness (in)	2.5	3.0	3.5	4.0
Cutterhead offset (in)	2.5	3.0	3.5	4.0
TBM cutterhead (excavated) diameter (ft)	29.2	34.7	40.2	45.3
TBM cutterhead (excavated) area (yd ²)	74	105	141	179

Table 3-2. Tunnel Lining and TBM Dimensions and Resulting Excavated Area

Notes:

cfs = cubic feet per second

in = inch(es)

yd² = square yard(s)

3.1.2 Bethany Reservoir Alternative

The Bethany Reservoir Alternative alignment includes two tunnel sections that vary, depending on the project design capacity: (1) a northern section between the intakes and the TCC varies in length and diameter, and (2) a main tunnel between the TCC and the Surge Basin reception shaft that varies only in diameter.

3.1.2.1 Northern Section

The length of the northern tunnel between the intakes and TCC varies, depending on the intakes used, which is directly related to the project flow rates as follows:

- 3,000 cfs Intake 5, Tunnel length = 5.6 miles
- 4,500 cfs Intakes 3 and 5, Tunnel length = 8.2 miles
- 6,000 cfs Intakes 3 and 5, Tunnel length = 8.2 miles
- 7,500 cfs Intakes 2, 3, and 5, Tunnel length = 10.3 miles

3.1.2.2 Main Section

The main section of the Bethany Reservoir Alternative tunnel alignment would extend from the TCC along an easterly route through New Hope Tract, Canal Ranch Tract, Brack Tract, Terminous Tract, King Island, and Rindge Tract to Lower Roberts Island, where the corridor would turn southwest through Lower Roberts Island, Lower and Upper Jones Tracts, Victoria Island, Kings Island, Union Island, and Coney Island to the Surge Basin reception shaft. The tunnel in this section is referred to as the main tunnel of the Bethany Reservoir Alternative and has a total length of 36.6 miles for all project design capacities.

3.1.3 Shafts

Along the tunnel sections, there are a number of shafts. Three different types of shafts would be constructed as part of the project, each serving a different purpose to support tunneling activities:

- Launch shafts At these shafts, the TBM would be lowered into the ground and begin excavation. All of the RTM associated with a tunnel drive would be extracted and brought to the surface at the respective launch site.
- Reception shafts At these shafts, the TBMs would complete excavation and be extracted from the ground.
- Maintenance shafts These shafts are located between the launch and reception shafts that the TBMs would pass through. These provide an opportunity to inspect and carry out maintenance and repairs to the cutterhead at the front of the TBM as well as the main bearing and other components that would otherwise be difficult to access during excavation.

Attachment 1 shows the configuration of the various shafts for the Bethany Reservoir Alternative. Table 3-3 summarizes each tunnel drive for the longest tunnel drive, which would occur for the 7,500 cfs project design capacity (40-ft-inside-diamter tunnel), listing the shaft name, shaft type, tunnel section, tunnel drive direction (indicated by an arrow) and tunnel drive length. The table omits the maintenance shafts for simplicity.

Structure	Shaft Type and Tunnel Drive Direction	Drive Length
Intake No. 2 Shaft	Reception	
Northern Tunnels	↑	10.3 mi
Twin Cities Shaft	Launch	
Main Tunnels	\checkmark	12.7 mi
Terminous Tract Shaft	Reception	

Table 3-3. Details for Bethany Corridor (7,500 cfs Project Design Capacity).

Structure	Structure Shaft Type and Tunnel Drive Direction	
Main Tunnels	↑	9.5 mi
Lower Roberts Island Shaft	Launch	
Main Tunnels	↓	14.4 mi
Surge Basin Shaft	Reception	
Total		46.9 mi

Notes:

mi = mile(s)

3.2 Reusable Tunnel Material Volumes

RTM would be generated at the TBM launch shafts. The volume of RTM generated at each of these shafts would be a function of the tunnel diameter and length. The tunnel diameter would vary with project design capacity, as summarized in Table 3-1.

The wet excavated volumes of RTM that would be generated and need to be processed at each launch shaft for each project design capacity would be as shown in Table 3-4.

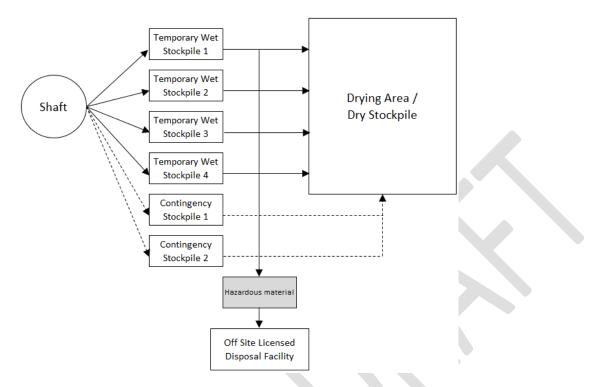
Shaft	3,000 cfs Project Design Capacity (M yd³)	4,500 cfs Project Design Capacity (M yd³)	Design Capacity Design Capacity	
Twin Cities	3.1	5.0	6.7	9.4
Lower Roberts Island	4.1	5.7	7.7	9.8
Total	7.2	10.7	14.4	19.2

Table 3-4. Wet Excavated RTM Volume Generated at Each Shaft for Each Option

Notes:

M = million(s)

As Table 3-4 shows, depending on the tunnel diameter, the volume of RTM to be processed ranges from 7.2 to 19.2 M yd³. The calculations of these volumes are included in Attachment 4.


3.3 Reusable Tunnel Material Processing

All of the RTM would be tested for contaminated and hazardous materials as it was excavated and before further processing. This section describes the process for testing, spreading, and drying the RTM excavated by an earth-pressure balance TBM. For a slurry TBM, the excavated material would be pre-processed in the slurry separation plant, so the post-processing requirement would be less.

3.3.1 Natural Drying

The Natural Drying process was selected for the Bethany Reservoir Alternative since the RTM would not be used as fill elsewhere on the project and it provides a reasonable method to manage and stockpile the

RTM at the launch shaft sites. The process for testing, spreading, and drying the RTM would follow the flowchart shown on Figure 3-1 and described here.

Figure 3-1. Natural Drying Flowchart

The excavated material would be transferred from the shaft by conveyor to a temporary wet stockpile area, where bulldozers would pile it up to a maximum of 10 feet high. The temporary wet stockpiles would be designed to accommodate about 1 weeks' worth of RTM at peak excavation rate. Once a week's worth (or other amount to be determined by the contractor) of RTM was placed in the temporary wet stockpile area, it would be isolated while samples collected for this material are tested for hazardous materials. Meanwhile, stockpiling would continue in a second and subsequent temporary wet stockpile areas. Stockpiling would occur whenever a TBM advances and hence is expected to be a 20 hour/day operation. Leachate or runoff from the temporary wet stockpiles would be collected and tested before being used or released.

Once the test results have been received, the temporary wet stockpile can be emptied with the use of bulldozers pushing the RTM into central conveyor pits. It is anticipated that it would take 2 weeks to empty a full wet stockpile area based on a 10 hour working day and as such, a total of four temporary wet stockpile areas would be required, with one being filled, one being held for test results, and two being emptied at any one time. A further two contingency stockpiles of the same size are also recommended to accommodate unforeseen delays.

If the test results suggested a sample was hazardous, all of the RTM from that stockpile would be removed from site and taken to a licensed disposal facility. If the test results deemed the sample as nonhazardous, the RTM would be transferred by wheel loader, conveyor, or another method to be determined by the contractor, to a specific cell within the drying area. During the wet season, the RTM would be piled up within the drying cell until the dry season or a suitable stretch of dry weather occurs. At the beginning of the dry season, the RTM piles and any subsequent RTM generated would be spread out by bulldozers within its respective cell to a depth ideally of no more than 18 inches and allowed to dry for at least

3 weeks, with no additional effort applied to accelerate the drying process, since the soil would not be needed on a scheduled basis for transport and use for structural fill as part of the project. This duration was calculated based on an average volume of water that would need to be extracted of 1.65 gallons per cubic foot and an evaporation rate of 0.21 inch per day over a given area, estimated from the California Irrigation Management Information System data for the period of April 2019 until March 2020. The drying time calculation can be found in Attachment 4. At the end of the third week, a compactor would roll over the RTM to compact it in place, preparing the ground for the next lift. Each cell would be designed to hold 1 weeks' worth of RTM at 18 inches high. The wet season is conservatively estimated to last 7 months of the year; as such, a total of 37 cells would be required, with 15 of those being used twice within the dry season of an annual cycle. The process would continue as tunnel excavation advanced up to a final height specific to each location and project design capacity.

3.3.2 Processing Area and Equipment

The total area required for processing and storage of RTM varies by site and tunnel diameter associated with the project design capacity. Similarly, the equipment used in the processing, as well as the power requirement and cost of that equipment, is directly related to the excavation rate and tunnel diameter.

Tables 3-5 and 3-6 show, for each TBM launch site and tunnel diameter associated with the project design capacity, the area allocated to process and the area for the temporary stockpile of all the RTM associated with a single tunnel drive at that site.

At the Twin Cities Complex Site, for the 3,000 cfs, 4,500cfs and 6,000cfs project design capacities, the temporary storage area is based on that required to spread the RTM 18 inches high. For the 7,500 cfs project design capacity at Twin Cities, the same area required for the 6,000 cfs project design capacity would be used, due to site constraints, with an increased annual lift as required.

	3,000 cfs Project Design Capacity	4,500 cfs Project Design Capacity	6,000 cfs Project Design Capacity	7,500 cfs Project Design Capacity
Temporary Wet Storage Area (acres)	9	12	14	16
Temporary Stockpile Area (acres)	129	168	196	196
Temporary Stockpile Annual Lift (in)	18	18	18	21

Table 3-5. RTM Processing, Temporary RTM Stockpiling Areas and Annual Lifts at Twin Cities
Complex per Tunnel Drive for a Range of Project Design Capacities

At Lower Roberts Island tunnel launch shaft site, the temporary storage area is based on that required for the natural drying process with an annual lift of 18 inches up to a maximum area of 196 acres per tunnel drive as dictated by site constraints beyond which the annual lift will increase as required.

	3,000 cfs Project Design Capacity	4,500 cfs Project Design Capacity	6,000 cfs Project Design Capacity	7,500 cfs Project Design Capacity
Temporary Wet Storage Area (acres)	9	12	14	16
Temporary Stockpile Area (acres)	129	168	196	196
Temporary Stockpile Annual Lift (in)	18	18	18.5	21

Table 3-6. RTM Processing, Temporary RTM Stockpiling Areas and Annual Lifts at Lower RobertsIsland Site per Tunnel Drive for a Range of Project Design Capacities

Table 3-7 shows the estimated earth-moving equipment required, and the estimated range of hours, power, and cost per tunnel drive for each project design capacity. The quantity, power, and cost vary according to tunnel diameter and assumed excavation rate, because they are directly related to the time required to process the RTM. Operating costs include rental, fuel and maintenance and repair. Costs are estimated in 2020 dollars and do not account for escalation.

Table 3-7. Earth-moving Equipment Requir	red Per Tunnel Drive for Range of Project Design
Capacities	

Equipment, Hours, Power and Cost	3,000 cfs Project Design Capacity	4,500 cfs Project Design Capacity	6,000 cfs Project Design Capacity	7,500 cfs Project Design Capacity
Bulldozers	12	12	12	12
Wheel Loaders	1	2	2	2
Compactor	1	1	1	1
Capital Cost	\$2.6M	\$2.8M	\$2.8M	\$2.8M
Annual Working Hours	10,000	13,000	15,200	17,400
Power Requirements (MWh/yr)	2,000	2,600	3,000	3,500
Annual Operating Cost	\$1.1M	\$1.4M	\$1.6M	\$1.8M

Notes:

MWh/yr = megawatt-hour(s) per year

Detailed calculations to show the areas and equipment requirements for each of project design capacity are included in Attachment 4.

3.3.3 Site Preparation

Each of the RTM processing areas would have the sites sufficiently prepared for all loading and operations that are expected. Temporary stockpiles are expected to be concrete structures with walls on three sides at least 3 feet above the designed stockpile height. They are also expected to have two centrally located conveyor pits into which the RTM can be pushed by bulldozer, as well as underground channels for the

conveyors to transport the RTM away from the temporary stockpiles to the next processing or loading area. Drainage should be incorporated into the floor design of the temporary stockpiles to catch runoff and leachate for testing, treatment (if required), and disposal.

3.4 Reusable Tunnel Material Storage

For the Bethany Reservoir Alternative, the area required for the long-term storage of RTM depends on the area required for drying and how much borrow material is planned to be excavated at each site, which would need to be replaced. The quantities described here were developed in conjunction with the projectwide soil balance, which considers onsite borrow, other onsite material sources, and fill needs across the project.

At both the TCC and Lower Roberts Island, a borrow pit is anticipated to be excavated. It is assumed that at each site, the surplus RTM from both tunnel drives would be stockpiled on one combined permanent storage site after tunneling was complete and the borrow pit was filled. The permanent storage stockpiles would be filled to a maximum height of 15 feet with area varying by site and project design capacity. Table 3-8 shows the areas of the permanent stockpile for each project design capacity.

	3,000 cfs Project Design Capacity	4,500 cfs Project Design Capacity	6,000 cfs Project Design Capacity	7,500 cfs Project Design Capacity
Twin Cities Complex (acres)	95	157	214	303
Lower Roberts Island (acres)	93	137	189	245

Table 2.0 Ansas of Demos and the almilles i	or Each Site and Each Project Design Capacity
Table 3-X Areas of Permanent Stockhiles 1	or Fach Nite and Fach Project Design (anacity
	of Each offe and Each froject Design capacity

Note: Assumes 15 foot fill height.

These areas include a 5 percent allowance for working space and vehicle maneuvering; the RTM would be placed with side slopes similar to the soil's natural angle of repose or as recommended by the project geotechnical engineers. For simplicity, side slopes are not accounted for in the calculations directly and would only have a negligible effect on volume and area calculations for such large quantities with comparatively small heights. Any difference in volume resulting from side slopes is more than accounted for in the 5 percent allowance for working space and vehicle maneuvering. Areas designated for the permanent storage of RTM that were not previous prepared would be stripped of topsoil prior to placement of the RTM. Stripped topsoil would be stockpiled and re-spread over these areas after the RTM was placed and the stockpiles would be planted with erosion control grasses.

3.4.1 Settlement

A preliminary settlement analysis would be conducted at each proposed storage site to understand the potential impacts, which would depend on the site-specific geotechnical conditions. Additional geotechnical analyses would be performed upon the completion of supplemental site-specific geotechnical exploration and testing. Furthermore, at Lower Roberts Island, RTM stored permanently is expected to sink by as much as 20 percent and become unusable for future use, although this is likely to take a number of years and have negligible effect outside of the stockpile footprint. When such settlements occur, the height of the stockpiles would be reduced approximately the same amount as the settlements.

4. References

Church, Horace. 1981. Excavation Handbook. McGraw-Hill.

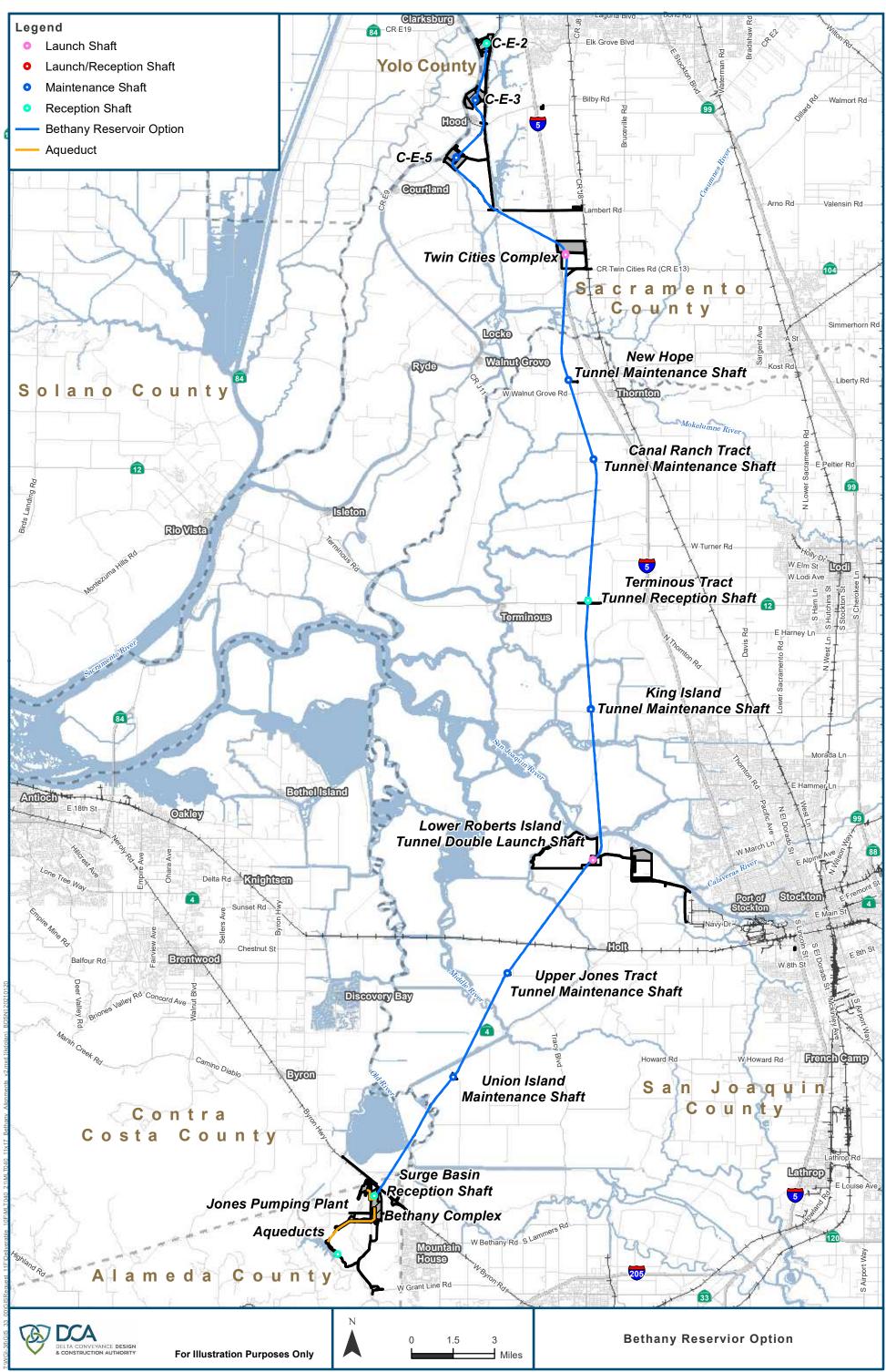
Delta Conveyance Design and Construction Authority (DCA). 2021a. *Soil Balance Technical Memorandum*. Final Draft.

Delta Conveyance Design and Construction Authority (DCA). 2021b. *Reusable Tunnel Material (RTM) Technical Memorandum*. Final Draft.

Delta Conveyance Design and Construction Authority (DCA). 2021c. *Preliminary Construction Schedules for Bethany Reservoir Alternative*. Final Draft.

Delta Conveyance Design and Construction Authority (DCA). 2021d. *Tunnel Lining Sizing Evaluation Technical Memorandum*. Final Draft.

Delta Conveyance Design and Construction Authority (DCA). 2021e. *Hydraulic Analysis of Delta Conveyance Options*. Final Draft.


5. Document History and Quality Assurance

Reviewers listed have completed an internal quality review check and approval process for deliverable documents that is consistent with procedures and directives identified by the Engineering Design Manager (EDM) and the DCA.

Approval Names and Roles											
Prepared by	Internal Quality Control review by	Consistency review by	Approved for submission by								
Shaun Firth / EDM RTM Task Force Lead Matt Weil / EDM	Michael Conant/ EDM Levees and Forebay Lead	Gwen Buchholz / DCA Environmental Consultant	Terry Krause / EDM Project Manager								
Geotechnical Engineer		Phil Ryan / EDM Design Manager									

This interim document is considered preliminary and was prepared under the responsible charge of Matthew Weil, California Geotechnical Engineering License GE3093.

Attachment 1 Corridor Map

Data Source: DCA, DWR

Attachment 2 Table of Inputs and Assumptions

CA Delta Conveyance Tunnel - RTM Calculations

Assumptions and Inputs

Input	nput Value									
Tunnel Lin	ing Dimensions									
3,000 cfs	Tunnel lining ID	26.00	ft							
5,000 CIS	Tunnels lining thickness	14.00	in							
4,500 cfs	Tunnel lining ID	31.00	ft							
4,500 CIS	Tunnels lining thickness	16.00	in							
6,000 cfs	Tunnel lining ID	36.00	ft							
6,000 CIS	Tunnels lining thickness	18.00	in							
7,500 cfs	Tunnel lining ID	40.00	ft							
7,500 CIS	Tunnels lining thickness	24.00	in							
TBM Dime	nsions									
2 000 of a	TBM tailcan thickness	2.50	in							
3,000 cfs	Cutterhead offset	2.50	in							

3,000 CIS	Cutterhead offset	2.50	in
	TBM tailcan thickness	3.00	in
4,500 CIS	Cutterhead offset	3.00	in
	TBM tailcan thickness	3.50	in
	Cutterhead offset	3.50	in
1 7 500 cfc	TBM tailcan thickness	4.00	in
	Cutterhead offset	4.00	in

Tunnel Excavation Rates									
Start up ad	vance rate (All Options)	30.00	ft / day						
3,000 cfs	Tunnels average advance rate	50.00	ft / day						
4,500 cfs	Tunnels average advance rate	46.00	ft / day						
6,000 cfs	Tunnels average advance rate	40.00	ft / day						
7,500 cfs	rfs Tunnels average advance rate 36.00 ft / da								
Est. percer	tage of excavation at peak rate (All Options)	16.67	%						

TBM Utilization									
Tunnelling hours per day	20	hours							
Tunnelling days per week	5	days / wk							
Tunnelling weeks per year	51	wks / yr							

Geotechnical Factors										
Unit weight of in-situ RTM	120.00	lb/ft3								
Unit weight of wet excavated RTM	weight of wet excavated RTM 99.70									
Unit weight of dry excavated RTM	95.00	lb/ft3								
Bulking factor	1.30									
Volume loss during drying	5.00	%								
Volume of water extracted during drying	1.65	gal/ft3								
Compaction factor	0.80									

Storing RTM		
Temporary stockpile working space/buffer	50.00	%
Temporary working space / buffer	20.00	%
Permanent working space / buffer	5.00	%
Max. height of temporary short term wet stockpiles	10.00	
Max. height of drying stockpile at Twin Cities	15.00	ft
Max. height of drying stockpile at Lower Roberts Island	15.00	ft

Attachment 3 Determination of Geotechnical Factors Please see Attachment 3 in *Reusable Tunnel Material (RTM) Technical Memorandum* (Volume 1, Attachment B, DCA, 2021b).

Attachment 4.1 RTM Calculations – 3,000 cfs, 26-foot-ID Tunnel

CA Delta Conveyance Tunnel - RTM Calculations

24 Jun 2021

Project Design Capacity 3,000 cfs RTM Volumes

Column Inputs	Internal Diameter	Tunnelling days / week	Tunnelling weeks / year	TBM Cutterhead Area	Bulking factor	Volume reduction due to drying	Compaction factor	TBM Cutterhead Area	Bulking factor	Volume reduction due to drying	Compaction factor
Northern tunnels ID	26.0 ft	5 days	51 wks	74 yd2				74 yd2			
Main tunnels ID	26.0 ft	5 days	51 wks	74 yd2	1.30	5.00 %	0.80	74 yd2	1.30	5.00 %	0.80
Southern tunnels ID	26.0 ft	5 days	51 wks	74 yd2				74 yd2			

				Drive Op	otions		RTM Volume / Tunnel Length			RTM Volume / Shaft				RTM Volume / Tunnel Drive		
Option	Element	Tunnel Length	Tunnel Drive	Drive Length	Drive Duration	TBM's	In-Situ RTM Volume / Tunnel Length	Wet Excavated RTM Volume / Tunnel Length	Dry Excavated RTM Volume / Tunnel Length	Dry Compacted RTM Volume / Tunnel Length	Wet In-situ RTM Volume / Shaft	Wet Excavated RTM Volume / Shaft	Dry Excavated RTM Volume / Shaft	Dry Compacted RTM Volume / Shaft	Dry Compacted RTM Volume / Tunnel Drive	Ave. Quarterly Excavated Dry Compacted RTM Volume / Tunnel Drive
		0.000 mi					- yd3	- yd3	- yd3	- yd3						
	Intake No. 5 Shaft Northern Tunnel	0.000 mi 5.640 mi	R ↑	5.640 mi	2.4 yrs		- yd3 736,907 yd3	- yd3 957,979 yd3	- yd3 910,080 yd3	- yd3 728,064 yd3					728,064 yd3	74,647 yd3
	Twin Cities Shaft Main Tunnel New Hope Shaft	4.580 mi	L ↓			2	598,410 yd3	777,933 yd3	739,037 yd3	591,229 yd3	2,394,948 yd3	3,113,432 yd3	2,957,761 yd3	2,366,209 yd3		
γNΥ	Main Tunnel Canal Ranch	3.000 mi	↓ M	12.690 mi	5.4 yrs		391,972 yd3	509,563 yd3	484,085 yd3	387,268 yd3					1,638,144 yd3	76,227 yd3
THA	Main Tunnel Terminous Tract Shaft Main Tunnel	5.110 mi 3.940 mi	→ R ↑				667,659 yd3 514,790 yd3	867,956 yd3 669,227 yd3	824,559 yd3 635,765 yd3	659,647 yd3 508,612 yd3						
BE	King Island Shaft Main Tunnel Lower Roberts Island Shaft	5.560 mi	M ↑	9.500 mi	4.1 yrs		726,455 yd3	944,391 yd3	897,171 yd3	717,737 yd3	3,122,709 yd3	4,059,522 yd3	3,856,546 yd3	3,085,237 yd3	1,226,349 yd3	74,355 yd3
	Southern Tunnels Upper Jones Tract Shaft	5.130 mi	L ↓ M			2	670,272 yd3	871,353 yd3	827,786 yd3	662,229 yd3	5,122,709 yus	4,035,322 yus	5,650,540 yus	5,005,237 yus		
	Southern Tunnels Union Island Shaft Southern Tunnels	4.240 mi	→ M →	14.400 mi	5.8 yrs		553,987 yd3 657,206 yd3	720,183 yd3 854,368 yd3	684,174 yd3 811,650 yd3	547,339 yd3 649,320 yd3					1,858,887 yd3	79,785 yd3
	Surge Basin Shaft Total	42.23 mi	R	42.23 mi		4	5,517,657 yd3	7,172,954 yd3	6,814,307 yd3	5,451,445 yd3	5,517,657 yd3	7,172,954 yd3	6,814,307 yd3	5,451,445 yd3	5,451,445 yd3	305,014 yd3

24 Jun 2021

Project Design Capacity 3,000 cfs RTM Volumes

Column Inputs	Internal Diameter	Tunnelling days / week	Tunnelling weeks / year
Northern tunnels ID	26.0 ft	5 days	51 wks
Main tunnels ID	26.0 ft	5 days	51 wks
Southern tunnels ID	26.0 ft	5 days	51 wks

				Drive 0	Options																									Quarterly	Dry Com	pacted R1	「M Volum	ie Genera	ted by Tu	nnel Drive	e (m yd3)																				
Option	Element	Tunnel Length	Tunnel	Drive Length	Dri		BM's	Start H		1 2	Y1		r I	Y2	7 0		10	Y3	12	12	Y4 14	4	16	17	Y5	9 20	21		Y6	24	25 2	Y7	1 20	20	Y8 30 31	1 22	22	Y9 34	25 2	c 27	Y1	10	40	41	Y11	2 44	45	¥1		48	40	Y13	51 52		Y:	14	-
			Drive		Dura	ation			-	2		4	2	0	/ 0	9	10	11	12	15	14	15	10	1/ .	10 15	9 20	21	22	23	24	25 2	0 2/	28	29	30 3.	1 32	33	54	35 5	0 3/	30	39	40	41	42 4.	5 44	45	40	47	40	49	50 :	51 5.	2 55	54		- 00
		0.000 mi																																																						i	
		0.000 mi		5.640 mi	2.4	yrs		20	0 0.	00.00	0.00	0.00	0.00	0.00	0.00 0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.00 0.0	0.07	0.07	0.07	0.07	0.07 0	.07 0.0	07 0.07	0.07	0.06	0.00 0.0	0.00	0.00	0.00	0.00 0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00	0.00	0.00 0	0.00	0.00	0.00	0.00	
Ir	ntake No. 5 Shaft		R																																																					(
N	lorthern Tunnel	5.640 mi	\uparrow																																																					(
Т	win Cities Shaft		L				2																																																	(
N	Aain Tunnel	4.580 mi	\downarrow																																																					(
<u> </u>	lew Hope Shaft		м																																																					(
	Aain Tunnel	3.000 mi	\downarrow	12.690 mi	5.4	yrs		17	0 0.	00 0.00	0.00	0.00	0.00	0.00	0.00 0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08 0	.08 0.0	0.08	0.08	0.08	0.08	0.08 0	.08 0.0	0.08	0.08	0.08	0.08 0.0	0.08	0.08	0.08	0.08 0.0	0.08	0.04	0.00	0.00	0.00	0.00 0.0	0.0	0.00	0.00	0.00	0.00	0.00	0.00 0	.00 0.0	0.00	0.00	0.00	
	anal Ranch		м																																																					(
<. ∖	/ain Tunnel	5.110 mi	\downarrow																																																					(
E IT	erminous Tract Shaft		R																																																					(
	Aain Tunnel	3.940 mi	1																																																					(
L 🖟	ing Island Shaft		M	9.500 mi	4.1	vrs		22	0 0	00 0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0	00 0.0	0.00	0.00	0.07	0.07	0.07 0	07 00	07 0.07	0.07	0.07	07 00	0.07	0.07	0.07	0.07 0.0	7 0.07	0.04	0.00	0.00	0.00	0.00		0 0 0	0.00	0.00	0.00	0.00	0.00 0		0.00	0.00	0.00	
R R	Aain Tunnel	5.560 mi	∧	5.500 111		,		~~		0.00	0.00	0.00	0.00	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	.00 0.0		0.00	0.07	0.07	0.07	.07 0.0	0.07	0.07	0.07			0.07	0.07	0.07 0.0		0.04	0.00	0.00	0.00		0.01	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00		
	ower Roberts Island Shaft	5.500 111					2																																																	(
	outhern Tunnels	5.130 mi	J J				-																																																	(
	Jpper Jones Tract Shaft	0.250 111	M																																																					(
	outhern Tunnels	4.240 mi	4	14.400 mi	5.8	vrs		20	0 0	00 0 00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0 00 0	00 0.0	0.00	80.08	80.0	80.0	0.08 0	08 0.0	0.08	0.08	0.08	0.08 0.0	0.08	0.08	0.08	0.08 0.0	18 0.08	0.08	0.08	0.08	0.08	0.08 0.0	12 0.0	0 0 00	0.00	0.00	0.00	0.00	0.00 0	00 00	0.00	0.00	0.00	
	Jnion Island Shaft	1.2.70 111	M	1	5.0	,			0.	0.00	0.00	. 0.00	0.00	0.00			5.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000		0.00	0.00	5.00	0.00	0.00 0		0.00	0.00	0.00		0.00	0.00	0.00	0.00 0.0	0.00	0.00	0.00	0.00	0.00 0		0.0	5.00	0.00	0.00	0.00	0.00	0.00		0.00	5.00	0.00 0	
	outhern Tunnels	5.030 mi																																																						(
	urge Basin Shaft	5.650 m	P																																																					(
	otal	42.23 mi	2	42.23 mi	-		4 Qu	Larterly	0	00 0.00		0.00	0.00	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.08 0	08 0.0	18 0.23	1 0 23	0.31	0.31	0.31 0	31 03	31 0 31	0.31	0.29	123 07	0 23	0.23	0.23	0.23 0.3	23 0.25	0.15	0.08	0.08	0.08 0	0.08 0.0	12 0.0	0 0 00	0.00	0.00	0.00	0.00	0 00 0		0 0 00	0.00	0.00 0	ñ
!		12:20 111		-12.25 111			- Qu	Total	0.			0.00	0.00	0.00 0			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0	15 0.0	0.23	0.20	1.00	1 20	1 61 1	01 21	22 2 2 52	2 02	2 11	2 24 2 2	7 2 20	4.02	4.26	4 40 4	72 4.00	E 11	5.10	5.00	5 35 5	13 5/	15 5.4	5 5 45	5.45	5.45	5.45	5.00	5.05 5	45 5/	5 5.45	5.00	5.45 5	Ĵ

24 Jun 2021

Project Design Capacity 3,000 cfs RTM Volumes

Column Inputs	Internal Diameter	Tunnelling days / week	Tunnelling weeks / year
Northern tunnels ID	26.0 ft	5 days	51 wks
Main tunnels ID	26.0 ft	5 days	51 wks
Southern tunnels ID	26.0 ft	5 days	51 wks

				Drive	Options]																		Quarterly [Dry Compac	ted RTM \	Volume Ge	enerated at	t Each Sha	ift (m yd3)																		
Option	Element	Tunnel Length	Tunn Driv			Drive TBM's	Start		Y1	4	Y	2	8 9	Y3	11 12	2 13	Y2	15	16 17	Y	Y5	20	21 22	Y6	24 25	Y7	27 2	28 29	Y8	31 3	12 33	Y9 34	35	36 37	Y1		40 4	1 42	Y11	44	45 4	Y12	48	49	Y13	1 52	53	¥14	55 56
					Dui	Tation		-						10						10		20 .		2.5		- 20					,2 35	54		50 57		55							-10	-13	50 5.	1 52		5.1	
		0.000 mi																																															
	Intake No. 5 Shaft	0.000 mi	R	5.640 mi	2.4	4 yrs	20																																										
	Northern Tunnel	5.640 mi																																															
	Twin Cities Shaft		L			2		0.00 0.	00.00	0.00	0.00	0.00	.00 0.0	0.00	0.0 0.0	0.00	0.00	0.00	.00 0.0	8 0.08	0.08	0.15 0	0.15 0.15	0.15	0.15 0.15	5 0.15	0.15 0.	.15 0.13	0.08	0.08 0.	08 0.08	0.08	0.08 0	.08 0.08	3 0.04	0.00	0.00 0.	00.00	0.00	0.00	0.00 0.0	00 0.00	0.00	0.00	0.00 0.0	0.00	0.00	0.00	.00 0.00
	Main Tunnel	4.580 mi	\downarrow																																														
	New Hope Shaft		M																																														
	Main Tunnel	3.000 mi	↓	12.690 mi	5.4	4 yrs	17																																										
	Canal Ranch		M																																														
<u> </u>	Main Tunnel	5.110 mi	↓																																														
1 <u> </u>	Terminous Tract Shaft		R																																														
	Main Tunnel	3.940 mi	1																																														
B	King Island Shaft		M	9.500 mi	4.1	1 yrs	22																																										
	Main Tunnel	5.560 mi																																															
	Lower Roberts Island Shaft		L			2		0.00 0.	00.00	0.00	0.00 0.00	0.00	.00 0.0	0.00	0.0 00.0	0.00	0.00	0.00 0	.00 0.0	0.00	0.00	0.08 0	0.08 0.15	0.15	0.15 0.15	5 0.15	0.15 0.	.15 0.15	0.15	0.15 0.	15 0.15	0.15	0.15 0	.15 0.15	0.12	0.08	0.08 0.	08 0.08	0.02	0.00	0.00 0.0	00.00	0.00	0.00	0.00 0.0	00.00	0.00	0.00 0	.00 0.00
	Southern Tunnels	5.130 mi	4																																														
	Upper Jones Tract Shaft		M																																														
	Southern Tunnels	4.240 mi	↓	14.400 mi	5.8	8 yrs	20																																										
	Union Island Shaft		M																																														
	Southern Tunnels	5.030 mi	↓										1												1																								1 1
	Surge Basin Shaft		R																																														
	Total	42.23 mi	2	42.23 mi		4	Quarterly	0.00 0.	00 0.00	0.00	0.00 0.00	0.00 0	.00 0.0	0 0.00	0.0 0.0	0.00	0.00	0.00 0	.00 0.0	8 0.08	0.08	0.23 0	0.23 0.31																										
							- Total	0.00 0.	00 0.00	0.00	0.00 0.00	0.00 0	.00 0.0	0 0.00	0.0 0.0	0.00	0.00	0.00 0	.00 0.0	8 0.15	0.23	0.46 0	0.69 1.00	1.30	L.61 1.9	1 2.22	2.52 2.	.83 3.11	3.34	3.57 3.	80 4.03	4.26	4.49 4	.72 4.95	5.11	5.19	5.27 5.	35 5.43	5.45	5.45	5.45 5.4	45 5.45	5 5.45	5.45 5	5.45 5.4	45 5.45	5.45	5.45 5	.45 5.45

Project Design Capacity 3,000 cfs Stockpiles

Maximum allowable stockpile heights

Max. permanent stockpile height at Twin Cities	15 ft	above grade
Max. permanent stockpile height at Lower Roberts	15 ft	above grade
Contingency	5 %	

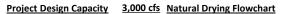
Temporary stockpiles (All RTM)

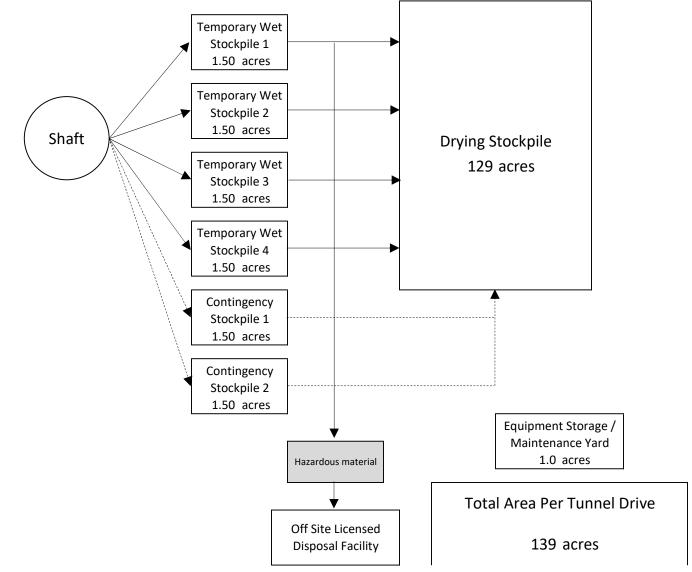
Bethany	Vol. of RTM to stockpile (yd3)	Area of temp. stockpile (acres)	Height of temp. stockpile (ft)	Resulting individual lift (in)
Twin Cities North	600,639	129	2.9	18.0
Twin Cities South	1,351,438	129	6.5	18.0
Lower Roberts North	1,099,295	129	5.3	18.0
Lower Roberts South	1,666,300	129	8.0	18.0

Permanent stockpiles (Surplus RTM)

		Based on n	nax. height
Bethany	Vol. of RTM to stockpile (yd3)	Area of perm. stockpile (acres)	Height of perm. stockpile (acres)
Twin Cities	2,182,526	95	15
Lower Roberts	2,148,548	93	15

Temporary stockpile notes


Twin Cities < 7,500 cfs, area based on drying method 7,500 cfs uses same area as for 6,000 cfs Lower Roberts


Area based on drying method Max. available area 193 acres / tunnel drive See 'No Drying Annual Process' sheet.

Permanent stockpile notes

Both sites consolidated into one stockpile Area calculated based on 15ft height At TC volume includes ring levee degradation Surplus volumes account for filling borrow pit

24 Jun 2021

<u>CA Delta</u>	Conveyanc	e Tunnel -	RTM Calcul	ations						24 Ji	un 2021																												
Project D	esign Capa	<u>city 3,00</u>	0 cfs Natu	al Drying A	Annual Pro	cess																																	
Drying st Tunnellin Tunnellin Wet seas Wet seas		tingency æk ear			5	8 in 5 % 5 days/v 1 weeks/ 7 months 0 weeks/ 7	/ year 5 / year																																
Per Tunne	Cell >	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	
Drive Season	Area→ Week↓	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	5 3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	Spreading Compacting
Wet	1	Hold	Hold	Hold	Fill			ason begins wi	ith 3 full cells fr	om previou	s drying season																												0 0
Wet	2 3	Hold	Hold	Hold	Hold	Fill		_																															0 0
Wet Wet	3 4	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold		Fill																															0 0 0 0
Wet	5	Hold	Hold	Hold	Hold	Hold	Hold																																0 0
Wet Wet	6 7	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold			Fill																													0 0
Wet	8	Hold	Hold	Hold	Hold	Hold				Hol																													0 0
Wet	9	Hold	Hold	Hold	Hold	Hold	Hold	Hold		Hol		Hold	Fill																										0 0
Wet Wet	10 11	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold				Hole			Hold Hold	Fill Hold	Fill																								0 0
Wet	12	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hole	d Hold	Hold	Hold	Hold	Hold	Fill																							0 0
Wet Wet	13 14	Hold	Hold	Hold	Hold Hold	Hold	Hold	Hold		Hol		Hold	Hold	Hold Hold	Hold	Hold Hold	Fill Hold	Fill																					0 0
Wet	15	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hol	d Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill																				0 0
Wet	16	Hold	Hold	Hold	Hold	Hold	Hold	Hold		Hole		Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill	Fill																		0 0
Wet Wet	17 18	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hol	a Hola d Hold	Hold	Hold	Hold	Hold	Hold Hold	Hold	Hold Hold	Hold	Hold Hold	Hold	Fill																	0 0
Wet	19	Hold	Hold	Hold	Hold	Hold	Hold	Hold		Hol	d Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill																0 0
Wet Wet	20 21	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold		Hole	u 1101u	Hold Hold	Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Fill Hold	Fill														0 0
Wet	21	Hold	Hold	Hold	Hold	Hold	Hold	Hold		Hol		Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill													0 0
Wet	23	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hol	d Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill												0 0
Wet Wet	24 25	Hold Hold	Hold Hold	Hold	Hold	Hold	Hold	Hold Hold	Hold	Hol	d Hold d Hold	Hold	Hold	Hold	Hold	Hold Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Fill Hold	Fill										0 0
Wet	26	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hole	d Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill									0 0
Wet Wet	27 28	Hold Hold	Hold Hold	Hold	Hold Hold	Hold	Hold	Hold	Hold	Hol		Hold Hold	Hold	Hold Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold Hold	Hold	Hold	Hold Hold	Hold Hold	Fill Hold	Fill							0 0
Wet	28	Hold	Hold	Hold	Hold	Hold	Hold	Hold		Hol		Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill						0 0
Wet	30	Hold	Hold	Hold	Hold	Hold	Hold	Hold		Hol		Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill					0 0
Dry Dry	31 32	Spread Dry	Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold		Hole		Hold Hold	Hold	Hold Hold	Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Spread Dry	Hold Spread	Hold Hold	Hold	Hold Hold	Hold	Hold Hold	Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Fill + Spread Dry	Fill + Spread			3 0 3 0
Dry	33	Dry	Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hol			Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Dry	Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Dry	Dry F	ill + Spread		3 0
Dry	34	Dry + Comp	act Dry ad Dry + Compa	Dry	Spread	Hold	Hold	Hold	Hold	Hole		Hold	Hold	Hold	Hold	Hold Hold	Hold	Hold	Hold	Hold Hold	Dry + Compa	. ,	Dry ct Dry	Spread Dry	Hold	Hold	Hold Hold	Hold	Hold Hold	Hold	Hold	Hold Hold	Hold Hold	Hold (Hold	Dry + Compact	Dry Dry + Compact	,	+ Spread	3 3
Dry Dry	35 36	Dry		act Dry d Dry + Comp	Dry act Dry	Dry	Sprea	d Hold	Hold	Hol	d Hold d Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold		Dry + Compa	Dry + Compa		Spread Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	L.		ry + Compact	Dry Dry	3 3
Dry	37	Dry	Dry		d Dry + Comp		Dry	Sprea	u monu	Hole	u 1101u	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold				Dry + Compac		Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold	Hold			Dry +	Compact	3 3
Dry Dry	38 39	Dry + Comp	act Dry Dry + Comp	Dry	Fill + Sprea	ad Dry + Com Fill + Spr	npact Dry ead Dry + Con	Dry	Spread Drv	i Hol		Hold	Hold	Hold	Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold					Dry + Compa	ct Dry Dry + Compa	Dry t Dry	Spread Drv	Hold Spread	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold					3 3
Dry	40			Dry + Comp		Dry	,	ead Dry + Com	'	Dry	/ Sprea	d Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold						1	Dry + Compac	,	Dry	Spread	Hold	Hold	Hold	Hold					3 3
Dry	41 42				Dry + Comp				ead Dry + Com	pact Dry		Spread Drv	Hold	Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold								Dry + Compac		Dry	Spread	Hold	Hold Hold	Hold					3 3
Dry Dry	42					Dry + Com	npact Dry Dry + Con			,	mpact Dry pread Dry + Com	'	Spread Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold Hold									Dry + Compact	: Dry Dry + Compac	Dry t Dry	Spread Dry	Spread	Hold Hold					3 3
Dry	44								npact Dry	Dry		ead Dry + Comp	act Dry	Dry	Spread	Hold	Hold	Hold	Hold	Hold											Dry + Compact	t Dry	Dry	Spread					3 3
Dry Dry	45 46								Dry + Com	pact Dry Dry + Co	y Dry mpact Dry		d Dry + Compa Fill + Sprea	oct Dry d Dry + Compa	Dry ct Dry	Spread Dry	Hold Spread	Hold	Hold Hold	Hold Hold											ļ	Dry + Compac	t Dry Dry + Compact	Dry t Dry					2 3 2 3
Dry	47									,		npact Dry	Dry		Dry + Compac		Dry	Spread	Hold	Hold														Dry + Compact	t				2 3
Dry	48 49											Dry + Comp		· ·	Fill + Spread	1		Dry	Spread	Hold																			2 2 2 2
Dry Dry	49 50	Fill											Dry + Compa	oct Dry Dry + Compa		Fill + Spread Dry	Dry + Compac	ct Dry Dry + Compac	Dry t Dry	Spread Dry																			2 2 0 2
Dry	51	Hold													Dry + Compac	t Dry			Dry + Compac	t Dry																			0 2
Dry	52	Hold	Hold	Fill												Dry + Compac	t			Dry + Compa	ct																		0 2

Permanent stockpile per site

Shaft site	Total vol. of RTM (yd3)	Stockpile area (acres)	Final height of stockpile (ft)	Equivalent annual lift (in)
Twin Cities	2,182,526	258	5.2	24
Lower Roberts	2,148,548	258	5.2	24

Project Design Capacity 3,000 cfs Natural Drying Areas

Excavation Rates per tunnel drive

Tunnel lining ID	26	ft
TBM cutterhead area	668	ft2
TBM advance rate (ave.)	50	ft / day
TBM advance rate (peak)	100	ft / day
Daily in-situ rate of excavation per tunnel (ave.)	1,237	yd3 / day
Daily in-situ rate of excavation per tunnel (peak)	2,475	yd3 / day
Bulking factor	1.30	
Daily excavated volume per tunnel (ave.)	1,608	yd3 / day
Daily excavated volume per tunnel (peak)	3,217	yd3 / day
Estimated duration of peak excavation	21	days
Volume loss due to drying	5	%
Equivalent daily dry excavated volume per tunnel (ave.)	1,528	yd3 / day
Equivalent daily dry excavated volume per tunnel (peak.)	3,056	yd3 / day

Temporary Wet Stockpile Area per tunnel drive

No. of days storage	5	days	assuming 5 days of peak excavation in a 7 day cycle
Volume of RTM to stockpile at peak excavation rate	16,085	yd3	per stockpile
Height of stockpile	10	ft	short term
Contingency	50	%	includes allowance for conveyor pits
Area required at peak excavation rate	1.50	acres	per stockpile = 255 x 255 ft or equivalen
No. of temporary stockpiles	6.0		
Total area of temporary stockpiles	9.0	acres	

Equipment Storage / Maintenance Yard per tunnel drive

Area required for equipment storage	/ maintenance yard
-------------------------------------	--------------------

Drying Stockpile

Contingency

5 %

1.0 acres

Natural Drying Area Summary

Alignment	Site	Tunnel Drive	Compacted RTM to store above grade	Temporary Wet Stockpile 10 ft high	Equipment / Maintenance Yard	Dry Stockpile (height varies)	Total RTM Area	Total R	ГМ Area
	Twin Cities	North	0.6 m yd3	9.0 acres	1 acres	129 acres	139 acres	278	acres
Bethany		South	1.4 m yd3	9.0 acres	1 acres	129 acres	139 acres	278 acre	acres
Bellially	Lower Poberts Island	North	1.1 m yd3	9.0 acres	1 acres	129 acres	139 acres	278	acres
	Lower Roberts Island	South	1.7 m yd3	9.0 acres	1 acres	129 acres	139 acres	270	acres

Project Design Capacity 3,000 cfs Natural Drying Equipment

Temporary Wet Stockpile Filling per tunnel drive

Volume of RTM to stockpile at peak excavation rate	16,085	yd3	per stockpile as for Natural Drying
Bulldozer capacity	14.50	yd3 / bulldozer	
Target time for filling temporary stockpile	5	days	
Working hours per day	20	hours	
Average cycle time per shove	5	mins	
Efficiency	80	%	
Number of bulldozers required	2	bulldozers	
Total hours at peak excavation rate per day	23.0	hours / day	
Total hours at average excavation rate per day	11.5	hours / day	
Total hours for operation per year	2,932	hours / year	

Example: Komatsu, D65EX-18 WH, Capacity = 14.5yd3 (see equipment schedule for details)

Example: Komatsu, D65EX-18 WH, Capacity = 14.5yd3 (see equipment schedule for details)

Temporary Wet Stockpile Emptying per tunnel drive

Assume two conveyor pits in the centre of the temporary stockpile each to be loaded from both sides.

Volume of RTM to stockpile at peak excavation rate	16,085	yd3	per :
Bulldozer capacity	14.50	yd3 / bulldozer	
Target time for emptying temporary stockpile	10	days	
Working hours per day	10	hours	
Average cycle time per shove	5	mins	
Efficiency	81	%	
Number of bulldozers required	2	bulldozers	
Total hours at peak excavation rate per day	22.8	hours / day	
Total hours at average excavation rate per day	11.4	hours / day	2 st
Total hours for operation per year	2,910	hours / year	

per stockpile as for Natural Drying

2 stockpiles emptied at any one time

Drying Stockpile Moving per tunnel drive

Daily excavated volume per tunnel (peak)		yd3 / day	to be moved per day
Wheel Loader capacity	19.50	yd3 / wheel loader	
Working hours per day	10	hours	
Average cycle time	5	mins	
Efficiency	81	%	
Number of wheel loaders	1	wheel loaders	
Total hours at peak excavation rate per day	8.5	hours / day	
Total hours at average excavation rate per day	4.2	hours / day	
Total hours for operation per year	1,082	hours / year	

Example: Caterpillar, 990K, Capacity = 19.5yd3 (see equipment schedule for details)

Drying Area / Dry Stockpile Spreading per tunnel drive

Volume of RTM to be spread per cell (ave.)	8,042	yd3 / cell
Bulldozer capacity	14.50	yd3 / bulldozer
Working hours per week	50	hours / week / cell
Average cycle time per shove	5	mins
Efficiency	81	%
Number of bulldozers required	2	bulldozers / cell
Max. number of cells to spread in one week	3	cells
Number of bulldozers required	6	bulldozers
Total hours per cell (ave.)	57.1	hours / cell
Number of cells to spread per year	52	cells / year
Total hours for operation per year	2,967	hours / year

Example: Komatsu, D65EX-18 WH, Capacity = 14.5yd3 (see equipment schedule for details)

Drying Stockpile Compacting per tunnel drive

Roller width	84	in	
Roller width	2.33	yd	
Area per cell	3.5	acres	per site (ie. two tunnel drives)
Area per cell	16,889	yd2	
Speed	6.8	mph	
Speed	11,968	yd/hr	
Area/hr	27,925	yd2/hr	
Working hours per day	10	hours	
Efficiency	50	%	
No. of passes	2	passes	
Time to compact one cell	2.4	hrs	
Max. number of cells to compact in one week	3	cells / week	
Number of compactors required	1	compactors	
Number of cells to compact per year	52	cells / year	
Total hours for operation per year	126	hours / year	

Example: Caterpillar, CS54B, Capacity = 84in roller at 6.8mph (see equipment schedule for details)

Project Design Capacity 3,000 cfs Natural Drying Equipment Schedule

Working Hours / Year

Day shift only

Hours / day Days / week Weeks / year	10 hours 5 days 51 weeks
Total hours / year Day and night shift	2550 hours
Hours / day	20 hours

Days / week	5	days
Weeks / year	51	weeks
Total hours / year	5100	hours

Equipment Schedule (per tunnel drive)

Operation	Equipment	Manufacturer	Model	Power	Power	Hours / Year / Operation	Hourly Operatin Cost	g	Capital Cost
Temporary Wet Stockpiles Filling	Bulldozers	Komatsu	D65EX-18 WH	217 hp	162 kW	2932 hrs	\$ 105	; \$	\$ 196,000
Temporary Wet Stockpiles Testing									
Temporary Wet Stockpiles Emptying	Bulldozers	Komatsu	D65EX-18 WH	217 hp	162 kW	2910 hrs	\$ 105	\$	\$ 196,000
Drying Stockpile Moving	Wheel Loaders	Caterpillar	990K	699 hp	521 kW	1082 hrs	\$ 120) \$	\$ 180,000
Drying Stockpile Spreading	Bulldozers	Komatsu	D65EX-18 WH	217 hp	162 kW	2967 hrs	\$ 105	\$	\$ 196,000
Drying Stockpile Compacting	Compactor	Caterpillar	CS54B	131 hp	98 kW	126 hrs	\$ 55	; \$	73,100

Average Excavation Rate					Peak E	xcava	ation Rate
Total Hours /	Total Power /	Т	Total Annual		Quantity	Tot	al Capital Cost
Year	Year	Op	perating Cost		Quantity	101	ai capitai cost
2932 hrs	474 MWh	\$ 307,849			2	\$	392,000
2910 hrs	471 MWh	\$	305,568		4	\$	784,000
1082 hrs	564 MWh	\$	129,839		1	\$	180,000
2967 hrs	480 MWh	\$	311,560		6	\$	1,176,000
126 hrs	12 MWh	\$	6,919		1	\$	73,100
- hrs	- MWh	\$	-		0	\$	-
10,017 hrs	2,002 MWh	\$	1,061,734		14	\$	2,605,100

Equipment utilization 14%

Total Electrical	
Total Gas/Diesel	
Total	

10,017 hrs

- MW	h \$	-		0	\$ -
2,002 MW	h \$	1,061,734		14	\$ 2,605,100
2,002 MW	h \$	1,061,734]	14	\$ 2,605,100

Project Design Capacity 3,000 cfs Equipment Schedule Summary

Working Hours

Day shift only

Hours / day	10 hours
Days / week	5 days
Weeks / year	51 weeks
Total hours / year	2550 hours

Day and night shift

Hours / day	20	hours
Days / week	5	days
Weeks / year	51	weeks
Total hours / year	5100	hours

Equipment Schedule

No Drying - (per tunnel drive)		
Operation	Equipment	Power
Temporary Wet Stockpiles Filling	Bulldozers	217 hp
Temporary Wet Stockpiles Testing		hp
Temporary Wet Stockpiles Emptying	Bulldozers	217 hp
Drying Stockpile Moving	Wheel Loaders	699 hp
Drying Stockpile Spreading	Bulldozers	217 hp
Drying Stockpile Compacting	Compactor	131 hp

Total Electrical
Total Gas/Diesel
Total

Quantity	Total Hour	c / Voor
required	Total Hour	37 1001
2	2,932	hrs
		hrs
4	2,910	hrs
1	1,082	hrs
6	2,967	hrs
1	126	hrs
0	-	hrs

14

14

10,017 hrs

10,017 hrs

Annual usage

Notes Day and night shift, 12mths/yr No activity Day shift only, 12mths/yr Day shift only, 12mths/yr Day shift only, 12mths/yr Two passes over each drying cell / yr

2,910hrsDay shift only, 12mth1,082hrsDay shift only, 12mth2,967hrsDay shift only, 12mth126hrsTwo passes over each

24 Jun 2021

Attachment 4.2 RTM Calculations – 4,500 cfs, 31-foot-ID Tunnel

24 Jun 2021

Project Design Capacity 4,500 cfs RTM Volumes

Column Inputs	Internal Diameter	Tunnelling days / week	Tunnelling weeks / year	TBM Cutterhead Area	Bulking factor	Volume reduction due to drying	Compaction factor		TBM Cutterhead Area	Bulking factor	Volume reduction due to drying	Compaction factor
Northern tunnels ID	31.0 ft	5 days	51 wks	105 yd2				1	105 yd2			
Main tunnels ID	31.0 ft	5 days	51 wks	105 yd2	1.30	5.00 %	0.80		105 yd2	1.30	5.00 %	0.80
Southern tunnels ID	31.0 ft	5 days	51 wks	105 yd2	1				105 yd2	1		

				Drive Op	otions			RTM Volume /	Tunnel Length			RTM Volu	me / Shaft		RTM Volume	/ Tunnel Drive
Option	Element	Tunnel Length	Tunnel Drive	Drive Length	Drive Duration	TBM's	In-Situ RTM Volume / Tunnel Length	Wet Excavated RTM Volume / Tunnel Length	Dry Excavated RTM Volume / Tunnel Length	Dry Compacted RTM Volume / Tunnel Length	Wet In-situ RTM Volume / Shaft	Wet Excavated RTM Volume / Shaft	Dry Excavated RTM Volume / Shaft	Dry Compacted RTM Volume / Shaft	Dry Compacted RTM Volume / Tunnel Drive	Ave. Quarterly Excavated Dry Compacted RTM Volume / Tunnel Drive
	Intake No. 3 Shaft Northern Tunnel	0.000 mi 2.550 mi	R ↑	8.190 mi	3.9 yrs		- yd3 470,679 yd3	- yd3 611,882 yd3	- yd3 581,287.99 yd3	- yd3 465,030 yd3					1,493,568 yd3	95,373 yd3
	Intake No. 5 Shaft Northern Tunnel Twin Cities Shaft	5.640 mi	M ↑ L			2	1,041,030 yd3	1,353,339 yd3	1,285,672 yd3	1,028,538 yd3	3,854,027 yd3	5,010,235 yd3	4,759,723 yd3	3,807,778 yd3		
Ż	Main Tunnel New Hope Shaft Main Tunnel	4.580 mi 3.000 mi	→ × →	12.690 mi	5.9 yrs		845,376 yd3 553,739 yd3	1,098,988 yd3 719,861 yd3	1,044,039 yd3 683,868 yd3	835,231 yd3 547,095 yd3					2,314,210 yd3	97,629 yd3
HA	Canal Ranch Main Tunnel Terminous Tract Shaft	5.110 mi	M ↓ R				943,203 yd3	1,226,164 yd3	1,164,856 yd3	931,884 yd3						
BET	Main Tunnel King Island Shaft Main Tunnel	3.940 mi 5.560 mi	↑ M ↑	9.500 mi	4.5 yrs		727,244 yd3	945,418 yd3 1,334,143 yd3	898,147 yd3	718,518 yd3					1,732,466 yd3	95,579 yd3
	Lower Roberts Island Shaft Southern Tunnels Upper Jones Tract Shaft	5.130 mi	L 			2	946,894 yd3	1,230,963 yd3	1,169,415 yd3	935,532 yd3	4,411,458 yd3	5,734,895 yd3	5,448,150 yd3	4,358,520 yd3		
	Southern Tunnels Union Island Shaft	4.240 mi	× ×	14.400 mi	6.4 yrs		782,618 yd3	1,017,404 yd3	966,534 yd3	773,227 yd3					2,626,054 yd3	101,926 yd3
	Southern Tunnels Surge Basin Shaft	5.030 mi	R				928,436 yd3	1,206,967 yd3	1,146,619 yd3	917,295 yd3						
	Total	44.78 mi	2	44.78 mi		4	8,265,484 yd3	10,745,129 yd3	10,207,873 yd3	8,166,298 yd3	8,265,484 yd3	10,745,129 yd3	10,207,873 yd3	8,166,298 yd3	8,166,298 yd3	390,507 yd3

24 Jun 2021

Project Design Capacity 4,500 cfs RTM Volumes

Column Inputs	Internal Diameter	Tunnelling	Tunnelling
column inputs	internal Diameter	days / week	weeks / year
Northern tunnels ID	31.0 ft	5 days	51 wks
Main tunnels ID	31.0 ft	5 days	51 wks
Southern tunnels ID	31.0 ft	5 days	51 wks

				Drive (Options																						Q	uarterly Dr	y Compa	ted RTM	Volume G	enerated	d by Tunn	el Drive (m	n yd3)																			_
Option	Element	Tunnel Length	Tunnel	Drive Length	Drive	TBM's	Start H	HIDE	Y	'1			Y2			Y3			Y4	4			Y5			Y6				7			Y8			Y9			Y10			Y11				Y12			Y13			١	Y14	
option	Lienen	rumer zengen	Drive	Dire cenga	Duration	n	Start	1	2	3	4 5	6	7	8 !	9 10	11	12	13	14	15	16 1	17 1	.8 19	20	21	22	23	24 25	26	27	28 2	9 30) 31	32	33 3	4 35	36	37	38 3	9 40	41	42	43 4	44 45	5 46	47	48	49	50 5	51 52	53	54	55	56
		0.000 mi																																																				
	intake No. 3 Shaft Northern Tunnel	2.550 mi	R	8.190 mi	3.9 yrs		20		0.00	0.00			0.00	0.00	00 0.00	0.00	0.00	0.00	0.00	0.00				0.10	0.10	0.10	0.10	0.10 0.10	0.10	0.10	0.10 0.1	0 0 1	0 0 10	0.10	0.10 0.1	0 0.00	0.00	0.00			0.00	0.00	0.00			0.00	0.00	0.00	0.00	00 0.00	0.00	0.00	0.00	0.00
		2.550 mi	T	8.190 111	5.9 yrs		20	0 0.0	0.00	0.00 0	.00 0.0	0.00	0.00	0.00 0.	.00 0.00	0.00	0.00	0.00	0.00	0.00	5.00 0.	.00 0.0	00 0.00	0.10	0.10	0.10	0.10	.10 0.10	0.10	0.10	0.10 0	10 0.10	0 0.10	0.10	0.10 0	0.06	0.00	0.00	5.00 0.	00 0.00	0.00	0.00	0.00 0.	.00 0.0	0.00	0.00	0.00	0.00	0.00 0.0	00 0.00	0.00	0.00	0.00	0.01
	ntake No. 5 Shaft	5.640	M																																																			
	Northern Tunnel Twin Cities Shaft	5.640 mi	T																																																			
	Main Tunnel	4.580 mi	L			2																																																
		4.580 mi	×.																																																			
	New Hope Shaft Main Tunnel	3.000 mi	M	12.690 mi	5.9 yrs		17		0.00	0.00			0.00	0.00	00 0.00	0.00	0.00	0.00	0.00	0.00		10 01	10 0.10	0 0 10	0.10	0.10	0.10	0.10 0.10	0.10	0.10	0.10 0.:	10 0.10	0 0 10	0.10	0.10 0.1	0 0 10	0.10	0.10	10 0	10 0.07		0.00	0.00			0.00	0.00	0.00	0.00	00 0.00	0.00	0.00	0.00	0.00
	Canal Ranch	5.000 mi	*	12.090 111	5.9 yrs		1/	0 0.0	0.00	0.00 0	.00 0.0	0.00	0.00	0.00 0.	.00 0.00	0.00	0.00	0.00	0.00	0.00	J.00 U .	.10 0.1	10 0.10	0 0.10	0.10	0.10	0.10 0	.10 0.10	0.10	0.10	0.10 0	10 0.10	0 0.10	0.10	0.10 0	0.10	0.10	0.10	J.10 U.	10 0.07	0.00	0.00	0.00 0.	.00 0.0	0.00	0.00	0.00	0.00	0.00 0.0	00 0.00	0.00	0.00	0.00	0.00
	Main Tunnel	5.110 mi	M																																																			
ーデリ		5.110 mi	*																																																			
	Terminous Tract Shaft Main Tunnel	3.940 mi	R																																																			
		5.940 mi	M	9.500 mi	4.5		22		0.00	0.00			0.00	0.00	00 0.00	0.00	0.00	0.00	0.00	0.00				0 0 00	0.00	0.10	0.10	0.10 0.10	0.10	0.10	0.10 0.	0 0 1	0 0 10	0.10	0.10 0.1	0 0 10	0.10	0.10	10 0	10 0.01	0.00	0.00	0.00			0.00	0.00	0.00	0.00	00 0.00	0.00	0.00	0.00	0.00
BE	King Island Shaft Main Tunnel	5.560 mi		9.500 mi	4.5 yrs		22	0 0.0	0.00	0.00 0	.00 0.0	0.00	0.00	0.00 0.	.00 0.00	0.00	0.00	0.00	0.00	0.00	5.00 0.	.00 0.0	00 0.00	0 0.00	0.00	0.10	0.10	.10 0.10	0.10	0.10	0.10 0	10 0.10	0 0.10	0.10	0.10 0	0.10	0.10	0.10	J.10 U.	10 0.01	0.00	0.00	0.00 0.	.00 0.0	0.00	0.00	0.00	0.00 1	0.00 0.0	00 0.00	0.00	0.00	0.00	0.00
1	Lower Roberts Island Shaft	5.500 IIII	T																																																			
	Southern Tunnels	5.130 mi	L V			2																																																
	Upper Jones Tract Shaft	5.130 mil	Ň																																																			
	Southern Tunnels	4.240 mi		14.400 mi	6.4 vrs		20	0 0.0	0.00	0.00		0.00	0.00	0.00	00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	00 0.0	00 0.00	0.10	0.10	0.10	0.10	0.10 0.10	0.10	0.10	0.10 0.	10 0 10	0 0 10	0.10	0.10 0.1	0 0 10	0.10	0.10	10 0	10 0 10	0.10	0.10	0 10 0	10 00	18 0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00
	Union Island Shaft	4.240 111	M	14.400 111	0.4 yrs		20	0.0	0.00	0.00 0		0.00	0.00	0.00 0.	0.00	0.00	0.00	0.00	0.00	0.00			0.00	0.10	0.10	0.10	0.10	.10 0.1	0.10	0.10	0.10 0	0.10	0 0.10	0.10	0.10 0	0.10	0.10	0.10		10 0.10	0.10	0.10	0.10 0.	.10 0.0	0.00	, 0.00	0.00	0.00	0.00 0.0	0.00		0.00	5.00	0.00
	Southern Tunnels	5.030 mi																																																				
	Surge Basin Shaft	5.030 mil	P																																																			
	Total	44.78 mi	2	44.78 mi	-	4	Quarterly	0.0	0 0 00	0.00 0			0.00	0.00 0	00 0.00	0 0 00	0.00	0.00	0.00	0.00	0 00	10 01	10 0 10	0 0 29	0.29	0.39	0.39 0	39 039	0.39	0.39	0.39 0.3	39 0 39	9 0 39	0.39	0 39 0 3	39 0.36	0.30	0.30	1 30 0	30 0 18	3 0 10	0.10	0 10 0	10 00	0.00	0.00	0.00	0.00	0.00 0.	00 0.00	0.00	0.00		0.00
L		44.70 mi	-	1 44.70 mi			Total	0.0	0 0.00	0.00 0			0.00	0.00 0		0 0.00	0.00	0.00	0.00	0.00		10 0.1	20 0.10	9 0.29	0.88	1 27	1.66 2	2 05 2 4	1 2.84	3.23	3 62 4 0	1 4 4	0 4 79	5.18	5 57 5 6	6 6 32	6.61	6.91	7 20 7	50 7 68	3 7 78	7.88	7 99 8	09 81	7 8 17	8 17	8.17	8 17 3	8 17 8	17 817	7 8 17	8.17	1 8 17	8 17

24 Jun 2021

Project Design Capacity 4,500 cfs RTM Volumes

Colum	n Inputs	Internal Diameter		Tunnelling days / week	Tunnelling weeks / year
Northe	rn tunnels ID	31.0 ft		5 days	51 wks
Main t	unnels ID	31.0 ft	1	5 days	51 wks
Southe	rn tunnels ID	31.0 ft		5 days	51 wks

				Drive C	Options]																		Qu	arterly Dr	/ Compacte	d RTM V	lume Gene	erated at E	ach Shaft	(m yd3)																		
Option	Element	Tunnel Length	Tunne Drive			rive ration TBM's	Start	1	Y1 2 3	4	5 6	Y2	8	9 10	Y3	12	13	Y4	16	17	Y5	19 2	0 21	Y6	23 2	4 25	Y7	27 28	29	Y8	31 32	33	Y9 34 3	5 36	37	Y10	9 40) 41	¥1		44 45		12	48 4	19 50	Y13	52	53 5	Y14	56
-													-					-																							-					-				+
	Intake No. 3 Shaft	0.000 mi																																																
	Northern Tunnel	2.550 mi	к Ф	8.190 mi	3.9	vrs	20																																											1 1
	Intake No. 5 Shaft	2.550	. M	0.150 111	5.5	, ,	20																																											1 1
	Northern Tunnel	5.640 mi																																																1 1
	Twin Cities Shaft					2		0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0	0.0 0.0	0.00	0.00	0.00 0	0.0 0.0	0 0.00	0.10	0.10 0	0.10 0.1	19 0.19	0.19	0.19 0.1	9 0.19	0.19 0	.19 0.1	0.19	0.19 0.	19 0.19	0.19 0	0.19 0.1	16 0.10	0.10	0.10 0.	10 0.0	7 0.00	0.00	0.00 0	0.00 0.0	0.00	0.00	0.00 0.	.00 0.00	0.00	0.00	0.00 0.0	0.0 0.0	0.00
	Main Tunnel	4.580 mi	Ψ.			-																																												
\sim	New Hope Shaft		м																																															1 1
	Main Tunnel	3.000 mi	\downarrow	12.690 mi	5.9	yrs	17																																											1 1
5	Canal Ranch		м																																															1 1
_ ≤	Main Tunnel	5.110 mi	\downarrow																																															1 1
	Terminous Tract Shaft		R																																															1 1
	Main Tunnel	3.940 mi	\uparrow																																															1 1
BE	King Island Shaft		M	9.500 mi	4.5	i yrs	22																																											1 1
	Main Tunnel	5.560 mi	\uparrow																																															1 1
	Lower Roberts Island Shaft		L			2		0.00	0.00 0.00	0.00	0.00 0.00	0.00	0.00 0	0.0 00.0	00.00	0.00	0.00 0	0.0	0 0.00	0.00	0.00	0.00 0. :	10 0.10	0.20	0.20 0.2	0 0.20	0.20 0	.20 0.2	0.20	0.20 0.	20 0.20	0.20 0	0.20 0.2	20 0.20	0.20	0.20 0.3	20 0.1	.1 0.10	0.10	0.10 0	0.10 0.0	0.00	0.00	0.00 0.	.00 0.00	0.00	0.00	0.00 0.0	0.0	J 0.00
	Southern Tunnels	5.130 mi	+																																															1 1
	Upper Jones Tract Shaft		M																																															1 1
	Southern Tunnels	4.240 mi	↓	14.400 mi	6.4	l yrs	20																																											1 1
	Union Island Shaft		M																																															1 1
	Southern Tunnels	5.030 mi	*																																															1 1
	Surge Basin Shaft Total	44.78 mi	R	44.78 mi	-			0.00	00 000	0.00	0.00 0.00	0.00	0.00		0 0.00	0.00	0.00			0.10	0.10	10 0	20 0.20	0.20	0.20 0.2	0 0 20	0.20 0	20 0.2	0.20	0.20 0	20 0.20	0.20	20 01	26 0.20	0.20	0.20 0.	20 0 1	0 0 10	0.10	0.10	10 00	0.00	0.00	0.00	00 0.0	0 000	0.00	0.00		
	TOTAL	44.78 MI		44.78 mi	_	4	Quarterly Total		0.00 0.00	0.00	0.00 0.00	0.00	0.00 0		0.00	0.00	0.00 0	00 0.0	0 0.00	0.10	0.10 0	0.10 0.1	29 0.29	1.39	1 66 20	0.39	0.59 0	22 26	0.39	0.39 0.	70 5 19	5.57 5	0.59 0.3	22 6 61	6.01	7.20 7.	50 0.1	0.10	7.00	7.00 0	2 00 9 1	7 9 17	0.00	0.00 0.	17 0.00	7 9 17	0.00	0.00 0.0	17 0.0	7 9 17

Project Design Capacity 4,500 cfs Stockpiles

Maximum allowable stockpile heights

Max. permanent stockpile height at Twin Cities	15 ft	above grade
Max. permanent stockpile height at Lower Roberts	15 ft	above grade
Contingency	5 %	

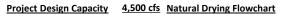
Temporary stockpiles (All RTM)

Bethany	Vol. of RTM to stockpile (yd3)	Area of temp. stockpile (acres)	Height of temp. stockpile (ft)	Resulting individual lift (in)
Twin Cities North	1,327,515	168	4.9	18.0
Twin Cities South	2,056,919	168	7.6	18.0
Lower Roberts North	1,605,412	168	5.9	18.0
Lower Roberts South	2,433,467	168	9.0	18.0

Permanent stockpiles (Surplus RTM)

		Based on max. height				
Bethany	Vol. of RTM to stockpile (yd3)	Area of perm. stockpile (acres)	Height of perm. stockpile (acres)			
Twin Cities	3,623,175	157	15			
Lower Roberts	3,167,175	137	15			

Temporary stockpile notes


Twin Cities < 7,500 cfs, area based on drying method 7,500 cfs uses same area as for 6,000 cfs Lower Roberts

Area based on drying method Max. available area 193 acres / tunnel drive See 'No Drying Annual Process' sheet.

Permanent stockpile notes

Both sites consolidated into one stockpile Area calculated based on 15ft height At TC volume includes ring levee degradation Surplus volumes account for filling borrow pit

24 Jun 2021

<u>CA Delta Conveyan</u>	e Tunnel	- RTM Calcu	ations						24 Jun 2	021																													
Project Design Capa	city <u>4,5</u>	00 cfs Natu	ral Drying A	nnual Prod	cess																																		
Drying stockpile hei Drying stockpile cor Tunnelling days / w Tunnelling weeks / Wet season Wet season Number of drying c	tingency ek ear			51	3 in 5 % 5 days / w 1 weeks / 7 7 months / 9 weeks / 7	year / year																																	
Per Tunnel Cell >	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37		
Drive Area→ Season Week√	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	Spreading Compact	ting
Wet 1	Hold	Hold	Hold	Fill		< wet sease	on begins with	3 full cells from	n previous dry	ing season																												0 0	
Wet 2	Hold	Hold	Hold	Hold	Fill		_																															0 0	
Wet 3 Wet 4	Hold Hold		Hold Hold	Hold Hold	Hold Hold		Fill																															0 0 0 0	
Wet 5	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill																														0 0	
Wet 6	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill																													0 0	
Wet 7 Wet 8	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Fill Hold	Fill																											0 0	
Wet 9	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill																										0 0	
Wet 10 Wet 11	Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold	Hold	Hold	Hold Hold	Hold	Fill Hold	Fill																								0 0	
Wet 11	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill																							0 0	
Wet 13	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill																						0 0	
Wet 14 Wet 15	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Fill Hold	Fill																				0 0	
Wet 16	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill																			0 0	
Wet 17 Wet 18	Hold Hold	Hold	Hold	Hold Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Fill	Fill																	0 0	
Wet 19	Hold	Hold	Hold Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold Hold	Hold	Fill																0 0	
Wet 20	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill		_													0 0	
Wet 21 Wet 22	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold	Hold	Hold	Hold Hold	Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Fill Hold	Fill													0 0	
Wet 23	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill												0 0	
Wet 24	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill											0 0	
Wet 25 Wet 26	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Fill Hold	Fill									0 0	
Wet 27	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill								0 0	
Wet 28 Wet 29	Hold	Hold	Hold	Hold Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Fill Hold	Fill						0 0	
Wet 30	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill					0 0	
Dry 31	Spread		Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Spread	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold		Fill + Spread				3 0	_
Dry 32 Dry 33	Dry Dry	Spread Dry	Hold	Hold	Hold	Hold Hold	Hold	Hold	Hold	Hold	Hold Hold	Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Dry Dry	Spread Drv	Hold	Hold	Hold Hold	Hold	Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Dry Dry	Fill + Spread Dry	Fill + Spread		3 0 3 0	
Dry 34	Dry + Com	pact Dry	Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Dry + Compac	ct Dry	Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Dry + Compact	t Dry		Fill + Spread	3 3	
Dry 35 Dry 36	Fill + Spre Dry	ead Dry + Comp	act Dry Id Dry + Comp	Dry act Dry	Spread Drv	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold		Dry + Compa	ct Dry Dry + Compa	Dry ct Dry	Spread Dry	Hold	Hold Hold	Hold	Hold Hold	Hold	Hold	Hold Hold	Hold Hold	Hold Hold	ſ	Dry + Compact	Dry ry + Compact	Dry	3 3	
Dry 37	Dry	Dry		d Dry + Comp		Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold				Dry + Compa		Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold	Hold		5		ry + Compact	3 3	
Dry 38	Dry + Com		Dry	Fill + Sprea			Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold					Dry + Compa		Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold					3 3	
Dry 39 Dry 40		Dry + Comp	act Dry Dry + Comp	Dry act Dry	Fill + Sprea	ad Dry + Comp Fill + Sprea	act Dry ad Dry + Compa	Dry ct Dry	Spread Drv	Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold						Dry + Compa	act Dry Dry + Compa	Dry ct Dry	Spread Dry	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold					3 3	
Dry 41				Dry + Comp		Dry		Dry + Compac		Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold								Dry + Compa		Dry	Spread	Hold	Hold	Hold					3 3	
Dry 42					Dry + Comp		Dry		Dry + Compa		Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold	Hold									Dry + Compa		Dry	Spread	Hold	Hold					3 3	
Dry 43 Dry 44						Dry + Comp	act Dry Dry + Compa	Dry ct Dry		Dry + Compac Fill + Spread	t Dry Dry + Compact	Dry Dry	Spread Dry	Hold Spread	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold										Dry + Compa	ict Dry Dry + Compa	Dry ct Dry	Spread Dry	Hold Spread					3 3 3 3	
Dry 45								Dry + Compac	t Dry	Dry	Fill + Spread D	ry + Compact	Dry	Dry	Spread	Hold	Hold	Hold	Hold												Dry + Compa	ct Dry	Dry					2 3	
Dry 46 Dry 47									Dry + Compa	ct Dry Dry + Compac		Fill + Spread D Dry		Dry Iry + Compact	Dry Dry	Spread Dry	Hold Spread	Hold Hold	Hold Hold													Dry + Compac	t Dry Dry + Compac					2 3	
Dry 47 Dry 48											t Dry <mark>Dry + Compac</mark> t			Fill + Spread D			Dry	Spread	Hold														ory + compac					2 3	
Dry 49		_										ry + Compact			Fill + Spread 0		t Dry	Dry	Spread																			2 2	
Dry 50 Dry 51	Fill Hold											C	ry + Compact	Dry Try + Compact	Dry Dry		Dry + Compac	t Dry Dry + Compac	Dry t Dry																			0 2	
Dry 51	Hold		Fill												ry + Compact	t			Dry + Compac	ct																		0 2	

Permanent stockpile per site

Shaft site	Total vol. of RTM (yd3)	Stockpile area (acres)	Final height of stockpile (ft)	Equivalent annual lift (in)	
Twin Cities	3,623,175	336	6.7	24	
Lower Roberts	3,167,175	336	5.8	24	

Project Design Capacity 4,500 cfs Natural Drying Areas

Excavation Rates per tunnel drive

Tunnel lining ID	31	ft
TBM cutterhead area	944	ft2
TBM advance rate (ave.)	46	ft / day
TBM advance rate (peak)	92	ft / day
Daily in-situ rate of excavation per tunnel (ave.)	1,608	yd3 / day
Daily in-situ rate of excavation per tunnel (peak)	3,216	yd3 / day
Bulking factor	1.30	
Daily excavated volume per tunnel (ave.)	2,091	yd3 / day
Daily excavated volume per tunnel (peak)	4,181	yd3 / day
Estimated duration of peak excavation	21	days
Volume loss due to drying	5	%
Equivalent daily dry excavated volume per tunnel (ave.)	1,986	yd3 / day
Equivalent daily dry excavated volume per tunnel (peak.)	3,972	yd3 / day

Temporary Wet Stockpile Area per tunnel drive

No. of days storage	5	days	assuming 5 days of peak excavation in a 7 day cycle
Volume of RTM to stockpile at peak excavation rate	20,905	yd3	per stockpile
Height of stockpile	10	ft	short term
Contingency	50	%	includes allowance for conveyor pits
Area required at peak excavation rate	1.94	acres	per stockpile = 291 x 291 ft or equivalen
No. of temporary stockpiles	6.0		
Total area of temporary stockpiles	11.7	acres	

Equipment Storage / Maintenance Yard per tunnel drive

Area required for equipment storage / maintenance yard

1.0 acres

Drying Stockpile

Contingency

5 %

Natural Drying Area Summary

Alignment	Site	Tunnel Drive	Compacted RTM to store above grade	Temporary Wet Stockpile 10 ft high	Equipment / Maintenance Yard	Dry Stockpile (height varies)	Total RTM Area		Total R	TM Area
	T	North	1.3 m yd3	11.7 acres	1 acres	168 acres	180 acres		264	
Bothany	Twin Cities	South	2.1 m yd3	11.7 acres	1 acres	168 acres	180 acres		361	acres
Bethany	Lower Roberts Island	North	1.6 m yd3	11.7 acres	1 acres	168 acres	180 acres	361		acres
		South	2.4 m yd3	11.7 acres	1 acres	168 acres	180 acres		301	acres

Project Design Capacity 4,500 cfs Natural Drying Equipment

Temporary Wet Stockpile Filling per tunnel drive

Volume of RTM to stockpile at peak excavation rate	20,905	yd3	per stockpile as for Natural Drying
Bulldozer capacity	14.50	yd3 / bulldozer	
Target time for filling temporary stockpile	5	days	
Working hours per day	20	hours	
Average cycle time per shove	5	mins	
Efficiency	80	%	
Number of bulldozers required	2	bulldozers	
Total hours at peak excavation rate per day	29.9	hours / day	
Total hours at average excavation rate per day	14.9	hours / day	
Total hours for operation per year	3,811	hours / year	

Example: Komatsu, D65EX-18 WH, Capacity = 14.5yd3 (see equipment schedule for details)

Example: Komatsu, D65EX-18 WH, Capacity = 14.5yd3 (see equipment schedule for details)

Temporary Wet Stockpile Emptying per tunnel drive

Assume two conveyor pits in the centre of the temporary stockpile each to be loaded from both sides.

Volume of RTM to stockpile at peak excavation rate	20,905	yd3	per sto
Bulldozer capacity	14.50	yd3 / bulldozer	
Target time for emptying temporary stockpile	10	days	
Working hours per day	10	hours	
Average cycle time per shove	5	mins	
Efficiency	81	%	
Number of bulldozers required	2	bulldozers	
Total hours at peak excavation rate per day	29.7	hours / day	
Total hours at average excavation rate per day	14.8	hours / day	2 stoc
Total hours for operation per year	3,782	hours / year	

per stockpile as for Natural Drying

2 stockpiles emptied at any one time

Drying Stockpile Moving per tunnel drive

Daily excavated volume per tunnel (peak) Wheel Loader capacity		yd3 / day yd3 / wheel loader	to be moved per day
Working hours per day	10	hours	
Average cycle time	5	mins	
Efficiency	81	%	
Number of wheel loaders	2	wheel loaders	
Total hours at peak excavation rate per day	11.0	hours / day	
Total hours at average excavation rate per day	5.5	hours / day	
Total hours for operation per year	1,406	hours / year	

Example: Caterpillar, 990K, Capacity = 19.5yd3 (see equipment schedule for details)

Drying Area / Dry Stockpile Spreading per tunnel drive

Volume of RTM to be spread per cell (ave.)	10,453	yd3 / cell
Bulldozer capacity	14.50	yd3 / bulldozer
Working hours per week	50	hours / week / cell
Average cycle time per shove	5	mins
Efficiency	81	%
Number of bulldozers required	2	bulldozers / cell
Max. number of cells to spread in one week	3	cells
Number of bulldozers required	6	bulldozers
Total hours per cell (ave.)	74.2	hours / cell
Number of cells to spread per year	52	cells / year
Total hours for operation per year	3,856	hours / year

Example: Komatsu, D65EX-18 WH, Capacity = 14.5yd3 (see equipment schedule for details)

Drying Stockpile Compacting per tunnel drive

Roller width	84	in	
Roller width	2.33	yd	
Area per cell	4.5	acres	per site (ie. two tunnel drives)
Area per cell	21,950	yd2	
Speed	6.8	mph	
Speed	11,968	yd/hr	
Area/hr	27,925	yd2/hr	
Working hours per day	10	hours	
Efficiency	50	%	
No. of passes	2	passes	
Time to compact one cell	3.1	hrs	
Max. number of cells to compact in one week	3	cells / week	
Number of compactors required	1	compactors	
Number of cells to compact per year	52	cells / year	
Total hours for operation per year	163	hours / year	

Example: Caterpillar, CS54B, Capacity = 84in roller at 6.8mph (see equipment schedule for details)

Project Design Capacity 4,500 cfs Natural Drying Equipment Schedule

Working Hours / Year

Day shift only

Hours / day	10 hours
Days / week	5 days
Weeks / year	51 weeks
Total hours / year	2550 hours
Day and night shift	
Hours / day	20 hours
Days / week	5 days

Days / week	5	days
Weeks / year	51	weeks
Total hours / year	5100	hours

Equipment Schedule (per tunnel drive)

Operation	Equipment	Manufacturer	Model	Power	Power	Hours / Year / Operation	Hourly Operating Cost		, , , , ,		Hourly Operating Cost		Capital Cost
Temporary Wet Stockpiles Filling	Bulldozers	Komatsu	D65EX-18 WH	217 hp	162 kW	3811 hrs	\$ 105	; ;	\$ 196,000				
Temporary Wet Stockpiles Testing													
Temporary Wet Stockpiles Emptying	Bulldozers	Komatsu	D65EX-18 WH	217 hp	162 kW	3782 hrs	\$ 105	5 \$	\$ 196,000				
Drying Stockpile Moving	Wheel Loaders	Caterpillar	990K	699 hp	521 kW	1406 hrs	\$ 120) (\$ 180,000				
Drying Stockpile Spreading	Bulldozers	Komatsu	D65EX-18 WH	217 hp	162 kW	3856 hrs	\$ 105	5 \$	\$ 196,000				
Drying Stockpile Compacting	Compactor	Caterpillar	CS54B	131 hp	98 kW	163 hrs	\$ 55	; \$	5 73,100				

Av	erage Excavation F		Peak E	xcava	ation Rate	
Total Hours /	Total Power /	Т	otal Annual	Quantity	Tot	al Capital Cost
Year	Year	Op	erating Cost	Quantity	1012	ii Capitai Cost
3811 hrs	617 MWh	\$ 400,107		2	\$	392,000
3782 hrs	612 MWh	\$	397,143	4	\$	784,000
1406 hrs	733 MWh	\$	168,749	2	\$	360,000
3856 hrs	624 MWh	\$	404,930	6	\$	1,176,000
163 hrs	16 MWh	\$	8,992	1	\$	73,100
		-				
- hrs	- MWh	\$	-	0	\$	-
13,019 hrs	2,602 MWh	\$	1,379,921	15	\$	2,785,100

Equipment utilization 17%

Total Electrical	
Total Gas/Diesel	
Total	

13,019 hrs

- MWh	\$ -	0	\$ -
2,602 MWh	\$ 1,379,921	15	\$ 2,785,100
2,602 MWh	\$ 1,379,921	15	\$ 2,785,100

Project Design Capacity 4,500 cfs Equipment Schedule Summary

Working Hours

Day shift only

Hours / day	10 hours
Days / week	5 days
Weeks / year	51 weeks
Total hours / year	2550 hours

Day and night shift

Hours / day	20	hours
Days / week	5	days
Weeks / year	51	weeks
Total hours / year	5100	hours

Equipment Schedule

No Drying - (per tunnel drive)		
Operation	Equipment	Power
Temporary Wet Stockpiles Filling	Bulldozers	217 hp
Temporary Wet Stockpiles Testing		hp
Temporary Wet Stockpiles Emptying	Bulldozers	217 hp
Drying Stockpile Moving	Wheel Loaders	699 hp
Drying Stockpile Spreading	Bulldozers	217 hp
Drying Stockpile Compacting	Compactor	131 hp

Total Electrical
Total Gas/Diesel
Total

		111.5
4	3,782	hrs
2	1,406	hrs
6	3,856	hrs
1	163	hrs
0	-	hrs
15	13,019	hrs

Annual usage

3,811 hrs

13,019 hrs

hrs

Quantity

required

2

15

Total Hours / Year Notes

Day and night shift, 12mths/yr No activity Day shift only, 12mths/yr Day shift only, 12mths/yr Day shift only, 12mths/yr Two passes over each drying cell / yr

24 Jun 2021

Attachment 4.3 RTM Calculations – 6,000 cfs, 36-foot-ID Tunnel

24 Jun 2021

Project Design Capacity 6,000 cfs RTM Volumes

Column Inputs	Internal Diameter	Tunnelling days / week	Tunnelling weeks / year	TBM Cutterhead Area	Bulking factor	Volume reduction due to drying	Compaction factor	TBM Cutterhead Area	Bulking factor	Volume reduction due to drying	Compaction factor
Northern tunnels ID	36.0 ft	5 days	51 wks	141 yd2				141 yd2			
Main tunnels ID	36.0 ft	5 days	51 wks	141 yd2	1.30	5.00 %	0.80	141 yd2	1.30	5.00 %	0.80
Southern tunnels ID	36.0 ft	5 days	51 wks	141 yd2				141 yd2			

				Drive Op	otions			RTM Volume /	/ Tunnel Length			RTM Volu	me / Shaft		RTM Volume	/ Tunnel Drive
Option	Element	Tunnel Length	Tunnel Drive	Drive Length	Drive Duration	TBM's	In-Situ RTM Volume / Tunnel Length	Wet Excavated RTM Volume / Tunnel Length	Dry Excavated RTM Volume / Tunnel Length	Dry Compacted RTM Volume / Tunnel Length	Wet In-situ RTM Volume / Shaft	Wet Excavated RTM Volume / Shaft	Dry Excavated RTM Volume / Shaft	Dry Compacted RTM Volume / Shaft	Dry Compacted RTM Volume / Tunnel Drive	Ave. Quarterly Excavated Dry Compacted RTM Volume / Tunnel Drive
	Intake No. 3 Shaft Northern Tunnel	0.000 mi 2.550 mi	R	8.190 mi	4.2 yrs		- yd3 631,876 yd3	- yd3 821,439 yd3	- yd3 780,366.76 yd3	- yd3 624,293 yd3					2,005,084 vd3	120,055 yd3
	Intake No. 5 Shaft Northern Tunnel	5.640 mi	M T	8.190 111	4.2 yrs		1,397,561 yd3	1,816,829 yd3	1,725,988 yd3	1,380,790 yd3					2,005,084 yus	120,055 903
~	Twin Cities Shaft Main Tunnel New Hope Shaft	4.580 mi	L ↓ M			2	1,134,899 yd3	1,475,368 yd3	1,401,600 yd3	1,121,280 yd3	5,173,949 yd3	6,726,133 yd3	6,389,827 yd3	5,111,861 yd3		
IAN,	Main Tunnel Canal Ranch Main Tunnel	3.000 mi 5.110 mi	→ ×	12.690 mi	6.3 yrs		743,383 yd3 1,266,230 yd3	966,398 yd3 1,646,099 yd3	918,079 yd3 1,563,794 yd3	734,463 yd3 1,251,035 yd3					3,106,778 yd3	122,937 yd3
ETH	Terminous Tract Shaft Main Tunnel King Island Shaft	3.940 mi	R 个 M	9.500 mi	4.8 yrs		976,310 yd3	1,269,203 yd3	1,205,743 yd3	964,595 yd3					2,325,799 vd3	120,448 yd3
В	Main Tunnel Lower Roberts Island Shaft Southern Tunnels	5.560 mi	↑ ↓	5.500 111	4.0 115	2	1,377,737 yd3	1,791,058 yd3 1,652,541 yd3	1,701,506 yd3 1,569,914 yd3	1,361,204 yd3 1,255,931 yd3	5,922,288 yd3	7,698,974 yd3	7,314,026 yd3	5,851,221 yd3	2,525,755 445	110,440 900
	Upper Jones Tract Shaft Southern Tunnels	4.240 mi	M V	14.400 mi	6.9 yrs		1,271,186 yd3 1,050,649 yd3	1,365,843 yd3	1,297,551 yd3	1,255,951 yds					3,525,422 yd3	128,114 yd3
	Union Island Shaft Southern Tunnels Surge Basin Shaft	5.030 mi	M ↓ R				1,246,406 yd3	1,620,328 yd3	1,539,312 yd3	1,231,449 yd3						
	Total	44.78 mi	2	44.78 mi		4	11,096,237 yd3	14,425,108 yd3	13,703,852 yd3	10,963,082 yd3	11,096,237 yd3	14,425,108 yd3	13,703,852 yd3	10,963,082 yd3	10,963,082 yd3	491,554 yd3

24 Jun 2021

Project Design Capacity 6,000 cfs RTM Volumes

Column Inputs	Internal Diameter	Tunnelling	Tunnelling
column inputs	Internal Diameter	days / week	weeks / year
Northern tunnels ID	36.0 ft	5 days	51 wks
Main tunnels ID	36.0 ft	5 days	51 wks
Southern tunnels ID	36.0 ft	5 days	51 wks

Define the length	
v v	Y14
Name Name <th< th=""><th>52 53 54</th></th<>	52 53 54
Name As As As As </td <td></td>	
Network State A State A State A State A State A C A C A C A C A C A C A C A A A A <td></td>	
Name Nam Name Name	0.00 0.00 0.00
Name S-04 S-0 S-0<	
Value Value <th< td=""><td></td></th<>	
Name ASO M M M	
Nain Tunnel Same V Same	
All	
Main Tunnel S.10 mi V V V V<	0.00 0.00 0.00
Image: Description of the series of	
Ain Tunnel 3.940 m A	
Image Image <th< td=""><td></td></th<>	
Low Roberts Island Shaft L <thl< th=""> L L <thl< th=""></thl<></thl<>	
Low Roberts Island Shaft L <thl< th=""> L L <thl< th=""></thl<></thl<>	0.00 0.00 0.00
Subter Tunnels Uppriones Tract Shaft Subter Tunnels Subter Tunnels	
Upper Jones Tract Shaft August Shaft Au	
Suther Tunels 4.240 in Unit Shaft Sh	
Union thand Shaft M </td <td></td>	
Southern Tunnels 5.030 mi Image: Contract of the cont	0.00 0.00 0.00
Surge Basin Shaft	
Total 44.78 mi 2 44.78 mi 2 44.78 mi 2 44.78 mi 4 Quarterly 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00 0.00 0.00

24 Jun 2021

Project Design Capacity 6,000 cfs RTM Volumes

Column Inputs	Internal Diameter		Tunnelling days / week	Tunnelling weeks / year
Northern tunnels ID	36.0 ft		5 days	51 wks
Main tunnels ID	36.0 ft	1	5 days	51 wks
Southern tunnels ID	36.0 ft		5 days	51 wks

				Drive C	Options]																			Quarterly	Dry Compa	acted RTI	V Volume	Generated	d at Each S	Shaft (m y	d3)																		
Option	Element	Tunnel Length	Tunne Drive			rive ation TBM's	Start		Y1	4	5 6	Y2	8	9 10	Y3	12	13 1	Y4	5 16	17	Y5	19	20 21	Y 1 22	76 23	24 2	5 26	(7	28	29 30	Y8	32	33 34	Y9	36	37 38	Y10	40	41 4	Y11	44	45	Y12	17 48	49	Y13		2 53	¥1	55 56	-
			Dilve		Dura		ł	-	2 5	-	5 0	· /	•	5 10			15 1	.4 13	- 10	1/	10	1.5	20 21		25	24 2.	5 20	21	20	25 50	- 51	52	55 54	- 55	30	57 50	, 35	40	41 4	12 43			40 .	7 40			51 5				-
	Intake No. 3 Shaft	0.000 mi																																																	
	Northern Tunnel	2.550 mi	т Т	8.190 mi	4.2	yrs	20																																												
	Intake No. 5 Shaft Northern Tunnel	5.640 mi	M T																																																
	Twin Cities Shaft					2		0.00 0	.00 0.00	0.00	0.00 0.00	0.00	0.00 0.	.00 0.00	0.00	0.00	0.00 0.	0.0	0.00	0.12	0.12	0.12 0	0.24 0.2	0.24	0.24	0.24 0.2	24 0.24	0.24	0.24 0	0.24 0.24	0.24	0.24 0	0.24 0.24	0.24	0.21	0.12 0.1	2 0.12	0.12	0.12 0.	03 0.0	0.00	0.00	0.00 0	0.0	0.00	0.00	0.00 0.	00 0.00	0.00	0.00 0.0	.00
	Main Tunnel	4.580 mi	\downarrow			-																																													1
⊢ ×	New Hope Shaft		м																																																. 1
5	Main Tunnel	3.000 mi	\downarrow	12.690 mi	6.3	yrs	17																																												1
	Canal Ranch		м																																																
¥	Main Tunnel	5.110 mi	\downarrow																																																
1 <u>+</u>	Terminous Tract Shaft		R																																																
	Main Tunnel	3.940 mi	\uparrow																																																
BE	King Island Shaft		M	9.500 mi	4.8	yrs	22																																												
	Main Tunnel	5.560 mi	\uparrow																																																
	Lower Roberts Island Shaft		L			2		0.00 0	.00 0.00	0.00	0.00 0.00	0.00	0.00 0.	.00 0.00	0.00	0.00	0.00 0.	0.0	0.00	0.00	0.00	0.00 0	0.13 0.1	13 0.25	0.25 (0.25 0.2	25 0.25	0.25	0.25 0	0.25 0.25	0.25	0.25 0	0.25 0.25	0.25	0.25	0.25 0.2	5 0.25	0.25	0.17 0.	13 0.1	3 0.13	0.13	0.13 0	.07 0.00	0 0.00	0.00	0.00 0.	00 0.00	0.00	0.00 0.00	JO
	Southern Tunnels	5.130 mi	+																																																
	Upper Jones Tract Shaft		м																																																
	Southern Tunnels	4.240 mi	*	14.400 mi	6.9	yrs	20																																												
	Union Island Shaft	5 020	M																																																
	Southern Tunnels	5.030 mi	V P																																																
	Surge Basin Shaft Total	44.78 mi	R	44.78 mi	_		Overterly	0.00 0	00 0.00	0.00	000	0.00	0.00 0	00 0.00	0.00	0.00	0.00 0	00 0.0		0.12	0.12	0.12 0	27 02	7 0 40	0.40	10 0/	10 0.40	0.40	0.40	140 0.40	0.40	0.40	10 0.40	0.40	0.46	0 27 0 2	7 0 27	0.27	0.20 0.	16 0.1	2 0 12	0.12	0.12 0	07 0.00	0 0 00	0.00	0.00	00 0.00	0.00	0.00 0.00	00
L	10001	44.78 111		44./8 111		4	Uuarteriy Total				0.00 0.00					0.00	0.00 0.			0.12	0.12	0.12 0	74 11	11 1 60	2.00	2 50 20	+5 0.49	4.06	4 55 5	04 5 54	6.02	6 52 7	0.45	7 0.49		8.82 9.1									06 10.96					10.00 0.00	06

Project Design Capacity 6,000 cfs Stockpiles

Maximum allowable stockpile heights

Max. permanent stockpile height at Twin Cities	15 ft	above grade
Max. permanent stockpile height at Lower Roberts	15 ft	above grade
Contingency	5 %	

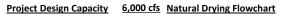
Temporary stockpiles (All RTM)

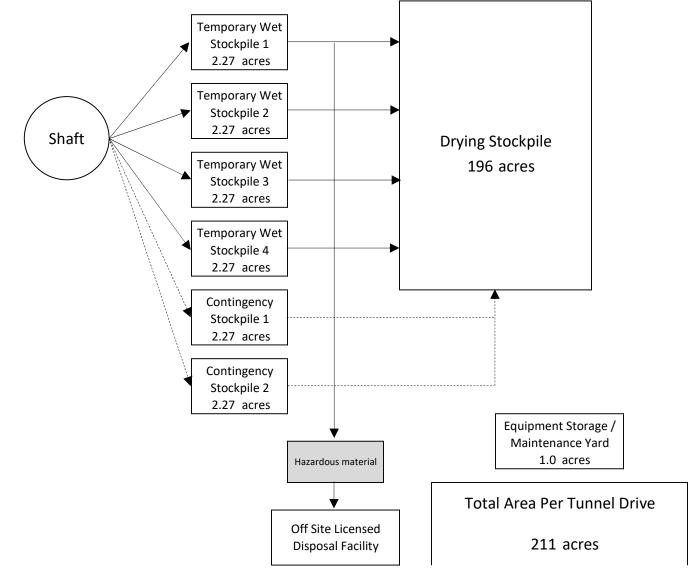
Bethany	Vol. of RTM to stockpile (yd3)	Area of temp. stockpile (acres)	Height of temp. stockpile (ft)	Resulting individual lift (in)
Twin Cities North	1,828,519	196	5.8	18.0
Twin Cities South	2,833,200	196	9.0	18.0
Lower Roberts North	2,198,745	196	7.0	18.0
Lower Roberts South	3,332,834	196	10.5	18.0

Permanent stockpiles (Surplus RTM)

		Based on r	nax. height
Bethany	Vol. of RTM to stockpile (yd3)	Area of perm. stockpile (acres)	Height of perm. stockpile (acres)
Twin Cities	4,924,578	214	15
Lower Roberts	4,361,335	189	15

Temporary stockpile notes


Twin Cities < 7,500 cfs, area based on drying method 7,500 cfs uses same area as for 6,000 cfs Lower Roberts


Area based on drying method Max. available area 196 acres / tunnel drive See 'No Drying Annual Process' sheet.

Permanent stockpile notes

Both sites consolidated into one stockpile Area calculated based on 15ft height At TC volume includes ring levee degradation Surplus volumes account for filling borrow pit

24 Jun 2021

<u>CA Delta Conveya</u>	ice Tunn	nel - RTM	Calculat	ions_							24	Jun 2021																														
Project Design Cap	acity (<u>6,000 cfs</u>	Natura	Drying A	nnual Pro	ocess																																				
Drying stockpile he Drying stockpile cc Tunnelling days / v Tunnelling weeks / Wet season Wet season Number of drying	ntingenc veek year				5	51 wee 7 mor	s / week eks / year nths / yea eks / year	ar																																		
Per Tunnel Cell		1	2	3	4		5	6	7	8	g	Ð	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32		33	34	35	36	37	
Drive Area- Season Week	5	5.3	5.3	5.3	5.3		5.3	5.3	5.3	5.3	5.	.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	5.3	: !	5.3	5.3	5.3	5.3	5.3	Spreading Compacting
Wet 1	H		Hold	Hold	Fill		<	wet season	begins with	3 full cells fro	om previou	us drying se	ason																													0 0
Wet 2 Wet 3			Hold Hold	Hold Hold	Hold Hold		Fill	Fill																																		0 0
Wet 4			Hold	Hold	Hold		Hold	Hold	Fill																																	0 0
Wet 5			Hold	Hold	Hold		Hold	Hold	Hold	Fill																																0 0
Wet 6 Wet 7			Hold Hold	Hold Hold	Hold Hold		Hold Hold	Hold Hold	Hold Hold	Hold Hold		ill old	Fill																													0 0
Wet 8			Hold	Hold	Hold		Hold	Hold	Hold	Hold			Hold	Fill																												0 0
Wet 9			Hold	Hold	Hold	1	Hold	Hold	Hold	Hold	Ho		Hold	Hold	Fill																											0 0
Wet 10 Wet 11			Hold Hold	Hold Hold	Hold Hold	1	Hold Hold	Hold Hold	Hold Hold	Hold Hold			Hold Hold	Hold Hold	Hold Hold	Fill Hold	Fill																									0 0
Wet 12		old	Hold	Hold	Hold	I	Hold	Hold	Hold	Hold	Но	bld	Hold	Hold	Hold	Hold	Hold	Fill																								0 0
Wet 13 Wet 14			Hold Hold	Hold Hold	Hold Hold	1	Hold	Hold Hold	Hold Hold	Hold Hold		bld	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Fill Hold	Fill																						0 0
Wet 14 Wet 15			Hold	Hold	Hold		Hold	Hold	Hold	Hold			Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill																					0 0
Wet 16			Hold	Hold	Hold	1	Hold	Hold	Hold	Hold	Ho	old	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill		_																		0 0
Wet 17 Wet 18		old	Hold Hold	Hold Hold	Hold Hold	1	Hold Hold	Hold Hold	Hold	Hold	Ho	old	Hold	Hold Hold	Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Fill Hold	Fill																		0 0
Wet 19		old	Hold	Hold	Hold	I	Hold	Hold	Hold	Hold	Но	old	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold		Fill																	0 0
Wet 20			Hold Hold	Hold	Hold	1	Hold	Hold	Hold	Hold			Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold Hold		Hold Hold		Fill	_														0 0
Wet 21 Wet 22			Hold	Hold Hold	Hold Hold	1	Hold Hold	Hold Hold	Hold Hold	Hold Hold		old old	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold		Hold	Hold Hold	Hold	Fill														0 0
Wet 23	н		Hold	Hold	Hold	1	Hold	Hold	Hold	Hold	Но	bld	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold		Hold	Hold	Hold				_											0 0
Wet 24 Wet 25			Hold Hold	Hold	Hold Hold	1	Hold	Hold	Hold	Hold		bld	Hold	Hold	Hold	Hold Hold	Hold	Hold Hold	Hold	Hold	Hold	Hold	Hold		Hold Hold	Hold	Hold Hold				Fill											0 0
Wet 25 Wet 26			Hold	Hold	Hold		Hold	Hold	Hold	Hold		old	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	11010	Hold	Hold	Hold					Fill										0 0
Wet 27			Hold	Hold	Hold	1	Hold	Hold	Hold	Hold			Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	11010	Hold	Hold	Hold			Hold					_							0 0
Wet 28 Wet 29			Hold Hold	Hold Hold	Hold Hold	1	Hold Hold	Hold Hold	Hold Hold	Hold Hold		old old	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	noid	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold												0 0
Wet 30		old	Hold	Hold	Hold	I	Hold	Hold	Hold	Hold	Но	bld	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold						ł	Fill					0 0
Dry 31 Dry 32			Hold	Hold	Hold Hold	1	Hold	Hold Hold	Hold Hold	Hold Hold			Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold			Hold Hold	Hold Hold	Hold Hold			Hold			Hold					+ Spread Dry Fil	I + Spread			3 0 3 0
Dry 32 Dry 33			pread Dry	Hold Spread	Hold		Hold	Hold	Hold	Hold	Но		Hold	Hold	Hold	Hold	Hold Hold	Hold	Hold	Hold	Hold	Hold	Dry		Spread		Hold			Hold								Dry Fil	Dry F	Fill + Spread		3 0
Dry 34	Dry + C		Dry	Dry	Spread	i t	Hold	Hold	Hold	Hold	Но	bld	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Dry + Com		Dry	Spread			Hold	Hold	Hold	Hold	Hold						Dry		Fill + Spread	3 3
Dry 35 Dry 36		Spread Dry		Dry Dry + Compa	Dry	Sp	pread Drv	Hold Spread	Hold Hold	Hold Hold	Ho	old old	Hold	Hold Hold	Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold		Dry + Com	Dry + Com	Dry pact Dry	Sprea Dry		l Hold d Hold	Hold	Hold	l Hold Hold	Hold	Hold			Hold Hold	Dry	+ Compact	Dry ry + Compact	Dry	3 3
Dry 37	D) Dry	Dry	Fill + Spread	d Dry + Com	pact	Dry	Dry	Spread	Hold	Но	old	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold			,	Dry + Com			Sprea	d Hold	Hold	Hold	Hold	Hold	Hold	d ⊦	Hold				Dry + Compact	3 3
Dry 38 Dry 39	Dry + C		Dry Compact	Dry	Fill + Spre		Compact	Dry	Dry t Dry	Spread Drv	Ho	bld	Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold					Dry + Con	npact Dry Dry + Com			d Hold		Hold				Hold Hold					3 3
Dry 40		DIV)ry + Compa				,	Dry + Comp	,	Dr		pread	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold						Diy + Con	Dry + Con		Dry						Hold					3 3
Dry 41					Dry + Com	pact	Dry	Dry	Fill + Sprea	d Dry + Comp		,	Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold									npact Dry	Dry					Hold					3 3
Dry 42 Dry 43						Dry +	Compact Dr		Dry t Dry	Fill + Spre Dry		ompact Spread Dry +	Dry Compact	Dry Dry	Spread Dry	Hold Spread	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold									Dry + Cor	npact Dry Dry + Com					Hold Hold					3 3
Dry 44							DI		Dry + Comp		Dr			y + Compact		Dry	Spread	Hold	Hold	Hold	Hold	Hold										017 . 0011	Dry + Cor				pread					3 3
Dry 45										Dry + Comp					ry + Compac	,	Dry	Spread	Hold	Hold Hold	Hold Hold	Hold												Dry + Cor			Dry					2 3
Dry 46 Dry 47											Dry + Co	ompact Dry +	Dry Compact		Fill + Spread Dry	Dry + Compa Fill + Spread	t Dry Dry + Compa	Dry ct Dry	Spread Dry	Hold Spread	Hold Hold	Hold Hold													Dry + Cor		Dry Compact					2 3
Dry 48												,		y + Compact	Dry	Dry	Fill + Spread	Dry + Compa	ct Dry	Dry	Spread	Hold																				2 2
Dry 49 Dry 50		Fill												C	ry + Compac	t Dry Dry + Compa	Dry	Fill + Spread Dry	d Dry + Comp	act Dry Dry + Comp	Dry act Dry	Spread Dry																				2 2 0 2
Dry 50 Dry 51			Fill														Dry + Compa			bry + comp	Dry + Comp																					0 2
Dry 52		old	Hold	Fill														Dry + Compa	<mark>c</mark> t			Dry + Com	<mark>pac</mark> t																			0 2

Permanent stockpile per site

Shaft site	Total vol. of RTM (yd3)	Stockpile area (acres)	Final height of stockpile (ft)	Equivalent annual lift (in)
Twin Cities	4,924,578	392	7.8	24
Lower Roberts	4,361,335	392	6.9	24

Project Design Capacity 6,000 cfs Natural Drying Areas

Excavation Rates per tunnel drive

Tunnel lining ID	36	ft
TBM cutterhead area	1,267	ft2
TBM advance rate (ave.)	40	ft / day
TBM advance rate (peak)	80	ft / day
Daily in-situ rate of excavation per tunnel (ave.)	1,877	yd3 / day
Daily in-situ rate of excavation per tunnel (peak)	3,754	yd3 / day
Bulking factor	1.30	
Daily excavated volume per tunnel (ave.)	2,440	yd3 / day
Daily excavated volume per tunnel (peak)	4,881	yd3 / day
Estimated duration of peak excavation	21	days
Volume loss due to drying	5	%
Equivalent daily dry excavated volume per tunnel (ave.)	2,318	yd3 / day
Equivalent daily dry excavated volume per tunnel (peak.)	4,637	yd3 / day

Temporary Wet Stockpile Area per tunnel drive

No. of days storage	5	days	assuming 5 days of peak excavation in a 7 day cycle
Volume of RTM to stockpile at peak excavation rate	24,404	yd3	per stockpile
Height of stockpile	10	ft	short term
Contingency	50	%	includes allowance for conveyor pits
Area required at peak excavation rate	2.27	acres	per stockpile = 314 x 314 ft or equivalen
No. of temporary stockpiles	6.0		
Total area of temporary stockpiles	13.6	acres	

Equipment Storage / Maintenance Yard per tunnel drive

Area required for equipment storage / maintenance yard

Drying Stockpile

Contingency

5 %

1.0 acres

Natural Drying Area Summary

Alignment	Site	Tunnel Drive	Compacted RTM to store above grade	Temporary Wet Stockpile 10 ft high	Equipment / Maintenance Yard	Dry Stockpile (height varies)	Total RTM Area	Total R	ГМ Area
		-							
	Twin Cities	North	1.8 m yd3	13.6 acres	1 acres	196 acres	211 acres	421	acres
Bethany	T WIT CILLES	South	2.8 m yd3	13.6 acres	1 acres	196 acres	211 acres	421	acres
Bethany	Lower Roberts Island	North	2.2 m yd3	13.6 acres	1 acres	196 acres	211 acres	421	acres
LO		South	3.3 m yd3	13.6 acres	1 acres	196 acres	211 acres	421	acres

Project Design Capacity 6,000 cfs Natural Drying Equipment

Temporary Wet Stockpile Filling per tunnel drive

Volume of RTM to stockpile at peak excavation rate	24,404	yd3	per stockpile as for Natural Drying
Bulldozer capacity	14.50	yd3 / bulldozer	
Target time for filling temporary stockpile	5	days	
Working hours per day	20	hours	
Average cycle time per shove	5	mins	
Efficiency	80	%	
Number of bulldozers required	2	bulldozers	
Total hours at peak excavation rate per day	34.9	hours / day	
Total hours at average excavation rate per day	17.4	hours / day	
Total hours for operation per year	4,448	hours / year	

Example: Komatsu, D65EX-18 WH, Capacity = 14.5yd3 (see equipment schedule for details)

Example: Komatsu, D65EX-18 WH, Capacity = 14.5yd3 (see equipment schedule for details)

Temporary Wet Stockpile Emptying per tunnel drive

Assume two conveyor pits in the centre of the temporary stockpile each to be loaded from both sides.

Volume of RTM to stockpile at peak excavation rate	24,404	yd3	per sto
Bulldozer capacity	14.50	yd3 / bulldozer	
Target time for emptying temporary stockpile	10	days	
Working hours per day	10	hours	
Average cycle time per shove	5	mins	
Efficiency	81	%	
Number of bulldozers required	2	bulldozers	
Total hours at peak excavation rate per day	34.6	hours / day	
Total hours at average excavation rate per day	17.3	hours / day	2 stoc
Total hours for operation per year	4,415	hours / year	

per stockpile as for Natural Drying

2 stockpiles emptied at any one time

Drying Stockpile Moving per tunnel drive

Daily excavated volume per tunnel (peak) Wheel Loader capacity		yd3 / day yd3 / wheel loader	to be moved per day
Working hours per day		hours	
Average cycle time		mins	
Efficiency	81		
Number of wheel loaders	2	wheel loaders	
Total hours at peak excavation rate per day	12.9	hours / day	
Total hours at average excavation rate per day	6.4	hours / day	
Total hours for operation per year	1,642	hours / year	

Example: Caterpillar, 990K, Capacity = 19.5yd3 (see equipment schedule for details)

Drying Area / Dry Stockpile Spreading per tunnel drive

Volume of RTM to be spread per cell (ave.)	12,202	yd3 / cell
Bulldozer capacity	14.50	yd3 / bulldozer
Working hours per week	50	hours / week / cell
Average cycle time per shove	5	mins
Efficiency	81	%
Number of bulldozers required	2	bulldozers / cell
Max. number of cells to spread in one week	3	cells
Number of bulldozers required	6	bulldozers
Total hours per cell (ave.)	86.6	hours / cell
Number of cells to spread per year	52	cells / year
Total hours for operation per year	4,502	hours / year

Example: Komatsu, D65EX-18 WH, Capacity = 14.5yd3 (see equipment schedule for details)

Drying Stockpile Compacting per tunnel drive

Roller width	84	in	
Roller width	2.33	yd	
Area per cell	5.3	acres	per site (ie. two tunnel drives)
Area per cell	25,624	yd2	
Speed	6.8	mph	
Speed	11,968	yd/hr	
Area/hr	27,925	yd2/hr	
Working hours per day	10	hours	
Efficiency	50	%	
No. of passes	2	passes	
Time to compact one cell	3.7	hrs	
Max. number of cells to compact in one week	3	cells / week	
Number of compactors required	1	compactors	
Number of cells to compact per year	52	cells / year	
Total hours for operation per year	191	hours / year	

Example: Caterpillar, CS54B, Capacity = 84in roller at 6.8mph (see equipment schedule for details)

Project Design Capacity 6,000 cfs Natural Drying Equipment Schedule

Working Hours / Year

Day shift only

Hours / day	10 hours
Days / week	5 days
Weeks / year	51 weeks
Total hours / year	2550 hours
Day and night shift	
Hours / day	20 hours
Days / week	5 days

Weeks / year	51 weeks
Total hours / year	5100 hours

Equipment Schedule (per tunnel drive)

Operation	Equipment	Manufacturer	Model	Power	Power	Hours / Year / Operation	Hourly Operating Cost	Capital Cost
Temporary Wet Stockpiles Filling	Bulldozers	Komatsu	D65EX-18 WH	217 hp	162 kW	4448 hrs	\$ 105	\$ 196,000
Temporary Wet Stockpiles Testing								
Temporary Wet Stockpiles Emptying	Bulldozers	Komatsu	D65EX-18 WH	217 hp	162 kW	4415 hrs	\$ 105	\$ 196,000
Drying Stockpile Moving	Wheel Loaders	Caterpillar	990K	699 hp	521 kW	1642 hrs	\$ 120	\$ 180,000
Drying Stockpile Spreading	Bulldozers	Komatsu	D65EX-18 WH	217 hp	162 kW	4502 hrs	\$ 105	\$ 196,000
Drying Stockpile Compacting	Compactor	Caterpillar	CS54B	131 hp	98 kW	191 hrs	\$ 55	\$ 73,100

Av	Average Excavation Rate					xcava	ation Rate
Total Hours /	Total Power /	Total Annual			Quantity	Tate	al Capital Cost
Year	Year	Op	perating Cost		Quantity	1012	ii Capitai Cost
4448 hrs	720 MWh	\$	467,073		2	\$	392,000
4415 hrs	714 MWh	\$	463,614		4	\$	784,000
1642 hrs	856 MWh	\$	196,993		2	\$	360,000
4502 hrs	728 MWh	\$	472,704		6	\$	1,176,000
191 hrs	19 MWh	\$	10,497		1	\$	73,100
- hrs	- MWh	\$	-		0	\$	-
15,198 hrs	3,037 MWh	\$	1,610,882		15	\$	2,785,100

3,037 MWh \$

Equipment utilization 20%

Total Electrical	
Total Gas/Diesel	
Total	

15,198 hrs

-	0	\$ -
1,610,882	15	\$ 2,785,100
1,610,882	15	\$ 2,785,100

Project Design Capacity 6,000 cfs Equipment Schedule Summary

Working Hours

Day shift only

Hours / day	10 hours
Days / week	5 days
Weeks / year	51 weeks
Total hours / year	2550 hours

Day and night shift

Hours / day	20	hours
Days / week	5	days
Weeks / year	51	weeks
Total hours / year	5100	hours

Equipment Schedule

No Drying - (per tunnel drive)		
Operation	Equipment	Power
Temporary Wet Stockpiles Filling	Bulldozers	217 hp
Temporary Wet Stockpiles Testing		hp
Temporary Wet Stockpiles Emptying	Bulldozers	217 hp
Drying Stockpile Moving	Wheel Loaders	699 hp
Drying Stockpile Spreading	Bulldozers	217 hp
Drying Stockpile Compacting	Compactor	131 hp

Total Electrical
Total Gas/Diesel
Total

		111.5
4	4,415	hrs
2	1,642	hrs
6	4,502	hrs
1	191	hrs
0	-	hrs
15	15,198	hrs

Annual usage

Total Hours / Year

4,448 hrs

15,198 hrs

hrs

Quantity

required

2

15

Notes Day and night shift, 12mths/yr No activity Day shift only, 12mths/yr Day shift only, 12mths/yr

Day shift only, 12mths/yr Day shift only, 12mths/yr Two passes over each drying cell / yr Attachment 4.4 RTM Calculations – 7,500 cfs, 40-foot-ID Tunnel

24 Jun 2021

Project Design Capacity 7,500 cfs RTM Volumes

Column Inputs	Internal Diameter	Tunnelling days / week	Tunnelling weeks / year	TBM Cutterhead Area	Bulking factor	Volume reduction due to drying	Compaction factor	TBM Cutterhead Area	Bulking factor	Volume reduction due to drying	Compaction factor
Northern tunnels ID	40.0 ft	5 days	51 wks	179 yd2				179 yd2			
Main tunnels ID	40.0 ft	5 days	51 wks	179 yd2	1.30	5.00 %	0.80	179 yd2	1.30	5.00 %	0.80
Southern tunnels ID	40.0 ft	5 days	51 wks	179 yd2				179 yd2			

				Drive Op	otions			RTM Volume /	Tunnel Length			RTM Volu	ime / Shaft		RTM Volume	/ Tunnel Drive
Option	Element	Tunnel Length	Tunnel Drive	Drive Length	Drive Duration	TBM's	In-Situ RTM Volume / Tunnel Length	Wet Excavated RTM Volume / Tunnel Length	Dry Excavated RTM Volume / Tunnel Length	Dry Compacted RTM Volume / Tunnel Length	Wet In-situ RTM Volume / Shaft	Wet Excavated RTM Volume / Shaft	Dry Excavated RTM Volume / Shaft	Dry Compacted RTM Volume / Shaft	Dry Compacted RTM Volume / Tunnel Drive	Ave. Quarterly Excavated Dry Compacted RTM Volume / Tunnel Drive
	Intake No. 2 Shaft		R								-					Tunner enve
	Northern Tunnel	2.110 mi	\uparrow				666,005 yd3	865,807 yd3	822,517 yd3	658,013 yd3						
	Intake No. 3 Shaft		м													
	Northern Tunnel	2.550 mi	\uparrow	10.300 mi	6.1 yrs		804,888 yd3	1,046,355 yd3	994,036.85 yd3	795,229 yd3					3,212,103 yd3	130,967 yd3
	Intake No. 5 Shaft		м													
	Northern Tunnel	5.640 mi	\uparrow				1,780,223 yd3	2,314,290 yd3	2,198,576 yd3	1,758,860 yd3						
	Twin Cities Shaft		L			2					7,256,619 yd3	9,433,605 yd3	8,961,924 yd3	7,169,540 yd3		
	Main Tunnel	4.580 mi	\downarrow				1,445,642 yd3	1,879,335 yd3	1,785,368 yd3	1,428,295 yd3						
⊢ ≻	New Hope Shaft		м													
Z	Main Tunnel	3.000 mi	\downarrow	12.690 mi	7.5 yrs		946,927 yd3	1,231,005 yd3	1,169,455 yd3	935,564 yd3					3,957,436 yd3	131,842 yd3
Ā	Canal Ranch		м													
\rightarrow	Main Tunnel	5.110 mi	\downarrow				1,612,933 yd3	2,096,813 yd3	1,991,972 yd3	1,593,578 yd3						
	Terminous Tract Shaft		R													
	Main Tunnel	3.940 mi	\uparrow				1,243,631 yd3	1,616,720 yd3	1,535,884 yd3	1,228,708 yd3						
BE	King Island Shaft		M	9.500 mi	5.7 yrs										2,962,620 yd3	129,908 yd3
- W	Main Tunnel	5.560 mi	\uparrow				1,754,972 yd3	2,281,463 yd3	2,167,390 yd3	1,733,912 yd3						
	Lower Roberts Island Shaft		L			2					7,543,854 yd3	9,807,010 yd3	9,316,659 yd3	7,453,327 yd3		
	Southern Tunnels	5.130 mi	\checkmark				1,619,246 yd3	2,105,019 yd3	1,999,768 yd3	1,599,815 yd3						
	Upper Jones Tract Shaft		м													
	Southern Tunnels	4.240 mi	\checkmark	14.400 mi	8.2 yrs		1,338,324 yd3	1,739,821 yd3	1,652,830 yd3	1,322,264 yd3					4,490,708 yd3	136,866 yd3
	Union Island Shaft		м													
	Southern Tunnels	5.030 mi	\checkmark				1,587,681 yd3	2,063,986 yd3	1,960,786 yd3	1,568,629 yd3						
	Surge Basin Shaft	46.00 mi	R	46.00			44,000,472,	10.240.014	40.270.504	11 (22 0(7	11.000.172	40.240.644	40.270.504	11.022.007	44 622 067	520 504
	Total	46.89 mi	2	46.89 mi		4	14,800,472 yd3	19,240,614 yd3	18,278,584 yd3	14,622,867 yd3	14,800,472 yd3	19,240,614 yd3	18,278,584 yd3	14,622,867 yd3	14,622,867 yd3	529,584 yd3

24 Jun 2021

Project Design Capacity 7,500 cfs RTM Volumes

Column Inputs	Internal Diameter	Tunnelling	Tunnelling
column inputs	Internal Diameter	days / week	weeks / year
Northern tunnels ID	40.0 ft	5 days	51 wks
Main tunnels ID	40.0 ft	5 days	51 wks
Southern tunnels ID	40.0 ft	5 days	51 wks

			Drive C	ptions																					(uarterly Dr	y Compac	ted RTM V	olume Ger	erated by	Tunnel Di	ive (m yd3)																		
Element	Tunnel Length	Tunnel	Drive Length	Drive	TBM's	Start	HIDE		Y1			Y2			Y3			Y4			Y	5			Y6		Y	7		Y8	3		Y9			¥10)		Y1	11			Y12			Y13			Y1	14
Element	runnei Lengtri	Drive	Drive Length	Duration	I DIVI S	Start	1 1	2	3	4	5 6	7	8	9 10	0 11	12	13	14	15 16	i 17	18	19	20 2	21 22	23	24 25	26	27	28 29	30	31 3	32 33	34	35 36	6 37	38	39 4	40 41	42	43	44 4	45 46	5 47	48	49 5	0 51	52	53	54	5.
ntake No. 2 Shaft		R																																															_	· _
Northern Tunnel	2.110 mi	\uparrow																																																í.
ntake No. 3 Shaft		м																																																i
lorthern Tunnel	2.550 mi	\uparrow	10.300 mi	6.1 yrs		20	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0	.00 0.0	0.00	0.00	0.00 0	0.13 0.	.13 0.13	0.13	0.13 0.13	3 0.13	0.13 0	.13 0.13	0.13	0.13 0.	13 0.13	0.13	0.13 0.1	L3 0.13	0.13	0.13 0.	.13 0.13	3 0.13	0.13	0.07	.00 0.0	0.00	0.00	0.00 0.	00.00	0.00	0.00	0.00	i
ntake No. 5 Shaft		м																																																ć
lorthern Tunnel	5.640 mi	\uparrow																																																i
win Cities Shaft		L			2																																													i
ain Tunnel	4.580 mi	\checkmark																																																i
ew Hope Shaft		м																																																i
ain Tunnel	3.000 mi	\downarrow	12.690 mi	7.5 yrs		17	0 0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.0 0.0	0.00	0.00	0.00	0.00 0	0.0 0.0	0.13	0.13	0.13 0	0.13 0.	.13 0.13	0.13	0.13 0.13	3 0.13	0.13 0	.13 0.13	0.13	0.13 0.	13 0.13	0.13	0.13 0.1	13 0.13	0.13	0.13 0.	.13 0.13	3 0.13	0.13	0.13 0	.13 0.1	3 0.00	0.00	0.00 0.	00.00	0.00	0.00	0.00	i
nal Ranch		м																																																i
ain Tunnel	5.110 mi	\downarrow																																																i
erminous Tract Shaft		R																																																i
ain Tunnel	3.940 mi	\uparrow																																																l
ing Island Shaft		м	9.500 mi	5.7 yrs		22	0 0.0	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0	0.00 0.0	0.00	0.00	0.00	0.00 0.	.00 0.13	0.13	0.13 0.13	3 0.13	0.13 0	.13 0.13	0.13	0.13 0	13 0.13	0.13	0.13 0.1	13 0.13	0.13	0.13 0.	.13 0.13	3 0.13	0.13	0.10 0	.00 0.0	0.00	0.00	0.00 0.	00 0.00	0.00	0.00	0.00	ć
Nain Tunnel	5.560 mi																																																	i
ower Roberts Island Shaft					2																																													i
outhern Tunnels	5.130 mi	↓																																																ć
Jpper Jones Tract Shaft		м																																																ć
outhern Tunnels	4.240 mi		14.400 mi	8.2 yrs		20	0 0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0	0.00 0.0	0.00	0.00	0.00	0.14 0.	.14 0.14	0.14	0.14 0.14	0.14	0.14	14 0.14	0.14	0.14 0	14 0.14	0.14	0.14 0.1	4 0.14	0.14	0.14 0.	14 0.14	4 0.14	0.14	0.14 0	14 0.1	4 0.14	0.14	0.14 0.	14 0.14	0.11	0.00	0.00	ċ
nion Island Shaft		M		,																																														i
outhern Tunnels	5.030 mi	¥									1																																							i
urge Basin Shaft	2.550 m	R									1																																							i
otal	46.89 mi	2	46.89 mi		4 0	Juarterly	0.0	0 0.00	0.00	0.00	2.00 0.00	0.00	0.00	0.00 0.0	0.00	0.00	0.00	0.00 0	0.00 0.0	0 0.13	0.13	0.13 (0.40 0.	40 0.53	0.53	0.53 0.53	3 0.53	0.53 0	53 0.53	0.53	0.53 0	53 0.53	0.53	0.53 0.5	3 0.53	0.53	0.53 0.	53 0.53	3 0.53	0.53	0.44 0	27 0.2	7 0.14	0.14	0.14 0.	14 0.14	0.11	0.00	0.00	t
				1	Q	Total	0.0		0.00	0.00		0 0.00		0.00 0.0		0.00			0.00 0.0	0 0 13	0.26					2.78 3.3																56 12 0	22 12 04	14 10 1	14 24 14	38 14 5	1 14 62	14.62	14.62	

24 Jun 2021

Project Design Capacity 7,500 cfs RTM Volumes

Column Inputs		Internal Diameter	Tunnelling days / week	Tunnelling weeks / year
Northern tunnels II)	40.0 ft	5 days	51 wks
Main tunnels ID		40.0 ft	5 days	51 wks
Southern tunnels II)	40.0 ft	5 days	51 wks

				Drive O	Options																				Quarterly D	ry Compa	cted RTN	1 Volume G	ienerated a	at Each Sł	haft (m yd3)																
	Element	Tunnel Length	Tunnel	Drive Length	Drive	TBM's	Start		Y1		,	Y2		Y3	3		Y4			Y	5		Y	/6		Y	7		Y	8		Y	Y9		Y	10		Y	11			Y12			Y13			Y14
			Drive		Duration	1		1 2	3	4 5	5 6	7	8 9	10	11 :	12 13	14	15 1	16 17	18	19	20 21	22	23	24 25	26	27	28 29	30	31	32 33	34	35	36 37	38	39	40 41	42	43	44 4	45 46	47	48	49 50	51	52	53 54	4 55
	No. 2 Shaft	2440	R																																													
	ern Tunnel	2.110 mi	.1.																																													
	No. 3 Shaft ern Tunnel	2.550 mi	M	10.300 mi			20																																									
		2.550 mi	.1.	10.300 mi	6.1 yrs		20																																									
	No. 5 Shaft	5 C 40	M																																													
	ern Tunnel lities Shaft	5.640 mi	T					00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00 0.00	0.00	0.00	00 0 13	0.12	0.12	0.26 0.2	0.00	0.20	20 0.20	0.20	0.20	0.26 0.2	0.00	0.20	0.20 0.2	0.20	0.26	0.26 0.2	6 0.26	0.26	0.26 0.2	6 0.26	0.26	0.20 0	12 0.1	3 0.00	0.00		0.00	0.00		
Main Ti		4.580 mi	L V			2		.00 0.00	0.00	0.00 0.0	0.00	0.00	J.UU U.UU	0.00	0.00 0.	.00 0.00	0.00	0.00 0.	0.15	0.15	0.15	0.26 0.2	0 0.20	0.20	0.20 0.20	0.20	0.20	0.20 0.2	0 0.20	0.20	0.20 0.2	0.20	0.20	0.26 0.2	0 0.20	0.20	0.20 0.2	0 0.20	0.20	0.20 0	.13 0.1	5 0.00	0.00 0	0.00	0.00	0.00	J.UU U.U	<i>1</i> 0 U
		4.580 mi	M																																													
Main Tr	ope Shaft	3.000 mi	101	12.690 mi	7.5 yrs		17																																									
Canal R		5.000 mi	*	12.090 111	7.5 yrs		1/																																									
Main Tr		5.110 mi	M																																													
	nous Tract Shaft	5.110 mi	¥																																													
Main T		3.940 mi	R		_																																											
	land Shaft	5.940 mi	M	9.500 mi	5.7 yrs		22																																									
Main Ti		5.560 mi		9.500 mi	5.7 yrs		22																																									
	Roberts Island Shaft	5.500 mi	T					00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00 0.00	0.00	0.00	00 0.00	0.00	0.00	0.14 0.1	4 0.27	0.27	0.27 0.27	0.27	0.27	0.27 0.2	7 0.27	0.27	0.27 0.2	7 0.27	0.27	0.27 0.2	7 0.27	0.27	0.27 0.2	7 0.27	0.27	0.24 0	.14 0.1	1 0 14	0.14 0	14 01	0.14	0.11		00
	ern Tunnels	5.130 mi	¥			2		.00 0.00	0.00	0.00 0.0	0.00	0.00	0.00	0.00	0.00 0.	.00 0.00	0.00	0.00 0.	.00 0.00	0.00	0.00	0.14 0.14	4 0.27	0.27	0.2/	0.27	0.27	0.27 0.2	/ 0.2/	0.27	0.27 0.2	0.2/	0.27	0.27 0.2	0.27	0.27	0.27 0.2	0.2/	0.27	0.24 0	.14 0.14	4 0.14	0.14 (J.14 0.1	14 0.14	0.11	J.00 0.0	10 0
	Jones Tract Shaft	5.150 mi	M																																													
	ern Tunnels	4.240 mi		14.400 mi	8.2 yrs		20																																									
	Island Shaft	4.240 mi	Ň	14.400 111	0.2 yrs		20																																									
	ern Tunnels	5.030 mi																																														
	Basin Shaft	5.050 mi	P																																													
Total	basin share	46.89 mi	2	46.89 mi		4	Quarterly 0	00 0.00	0.00	0.00 0	0 0 00	0.00	0 0 0 00	0.00	0.00 0	00 0.00	0.00	0.00 0	00 0 13	0.13	0.13	0.40 0.4	0 0 53	0.53	153 053	0.53	0.53	0.53 0.5	3 0 53	0.53	0.53 0.5	3 0 53	0.53	0.53 0.5	3 0 53	0.53	0.53 0.5	3 0 53	0.53	0.44 0	27 0.2	7 0 14	0.14	14 01	4 0 14	0.11	0.00 0.0	00 0
1.0.01		40.05 111	L	40.05 111	1		Total 0		0.00	0.00 0.		0.00		0.00	0.00 0		-		.00 0.13	_	0.40				2.78 3.31									9.14 9.6													1 62 14	.62 14

Project Design Capacity 7,500 cfs Stockpiles

Maximum allowable stockpile heights

Max. permanent stockpile height at Twin Cities	15 ft	above grade
Max. permanent stockpile height at Lower Roberts	15 ft	above grade
Contingency	5 %	

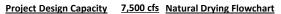
Temporary stockpiles (All RTM)

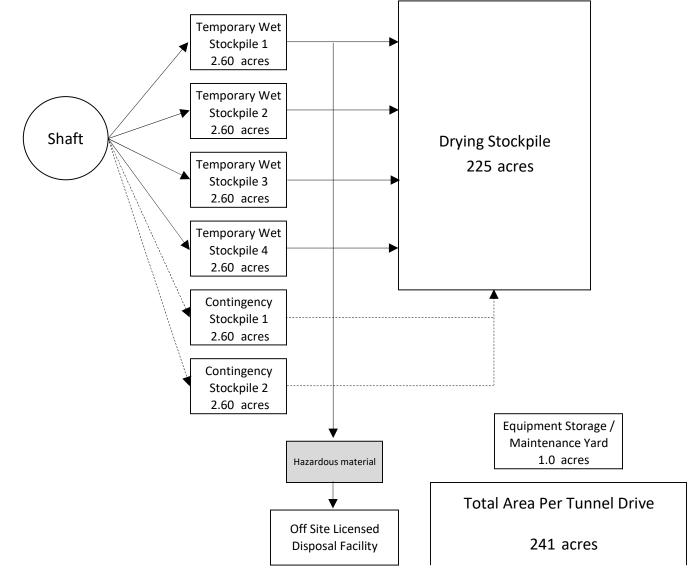
Bethany	Vol. of RTM to stockpile (yd3)	Area of temp. stockpile (acres)	Height of temp. stockpile (ft)	Resulting individual lift (in)
Twin Cities North	3,010,430	196	9.5	20.7
Twin Cities South	3,708,967	196	11.7	20.7
Lower Roberts North	2,835,566	196	9.0	20.7
Lower Roberts South	4,298,120	196	13.6	20.7

Permanent stockpiles (Surplus RTM)

		Based on max. height				
Bethany	Vol. of RTM to stockpile (yd3)	Area of perm. stockpile (acres)	Height of perm. stockpile (acres)			
Twin Cities	6,982,256	303	15			
Lower Roberts	5,643,021	245	15			

Temporary stockpile notes


Twin Cities < 7,500 cfs, area based on drying method 7,500 cfs uses same area as for 6,000 cfs Lower Roberts


Area based on drying method Max. available area 196 acres / tunnel drive See 'No Drying Annual Process' sheet.

Permanent stockpile notes

Both sites consolidated into one stockpile Area calculated based on 15ft height At TC volume includes ring levee degradation Surplus volumes account for filling borrow pit

24 Jun 2021

<u>CA Delta Conveya</u>	nce Tunn	nel - RTM	Calculat	ions_							1	24 Jun 20	121																												
Project Design Ca	acity	<u>7,500 cfs</u>	Natura	l Drying A	nnual Pr	ocess																																			
Drying stockpile hr Drying stockpile cc Tunnelling days / Tunnelling weeks , Wet season Wet season Number of drying	ntingeno veek 'year					51 we 7 mo		ar ear																																	
Per Tunnel Cell		1	2	3	4		5	6	7	8		9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	
Drive Area Season Week	6	5.1	6.1	6.1	6.1		6.1	6.1	6.1	6.1	L	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	6.1	Spreading Compacting
Wet 1	•	lold	Hold	Hold	Fill			< wet seaso	n begins wit	h 3 full cells	from pre	vious dryin	ig season																												0 0
Wet 2 Wet 3		lold lold	Hold Hold	Hold Hold	Hold		Fill Hold	Fill																																	0 0
Wet 4		lold	Hold	Hold	Hold		Hold	Hold	Fill																																0 0
Wet 5		lold	Hold	Hold	Hold		Hold	Hold	Hold																																0 0
Wet 6 Wet 7		lold lold	Hold Hold	Hold Hold	Hold Hold		Hold Hold	Hold Hold	Hold Hold			Fill Hold	Fill																												0 0
Wet 8		lold	Hold	Hold	Hold		Hold	Hold	Hold			Hold	Hold	Fill																											0 0
Wet 9		lold	Hold	Hold	Hold		Hold	Hold	Hold		-	Hold	Hold	Hold	Fill																										0 0
Wet 10 Wet 11		lold lold	Hold Hold	Hold Hold	Hold Hold	1 1	Hold	Hold Hold	Hold Hold	Hole Hole	d d	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Fill Hold	Fill																								0 0
Wet 12	н	lold	Hold	Hold	Hold	ł	Hold	Hold	Hold	Hole	d	Hold	Hold	Hold	Hold	Hold	Hold	Fill																							0 0
Wet 13 Wet 14		lold lold	Hold Hold	Hold Hold	Hold	1	Hold	Hold Hold	Hold Hold	Hol	d	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Fill Hold	Fill																					0 0
Wet 14 Wet 15		lold	Hold	Hold	Hold	1	Hold	Hold	Hold	Hol	d	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill																				0 0
Wet 16		lold	Hold	Hold	Hold	1	Hold	Hold	Hold	Hol	d	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill		_																	0 0
Wet 17 Wet 18		lold lold	Hold Hold	Hold Hold	Hold Hold	1	Hold	Hold	Hold	Hole	d d	Hold	Hold	Hold Hold	Hold	Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Fill Hold	Fill																	0 0
Wet 19	н	lold	Hold	Hold	Hold	i	Hold	Hold	Hold	Hol	d	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill																0 0
Wet 20		lold lold	Hold Hold	Hold	Hold		Hold	Hold	Hold	Hole	-	Hold	Hold	Hold Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Fill	Fill	_													0 0
Wet 21 Wet 22		iold Iold	Hold	Hold Hold	Hold Hold		Hold	Hold Hold	Hold Hold	Hol	a d	Hold Hold	Hold	Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold	Hold	Hold	Hold Hold	Hold	Fill													0 0
Wet 23	н	lold	Hold	Hold	Hold	i	Hold	Hold	Hold	Hol	d	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill		_										0 0
Wet 24 Wet 25		lold lold	Hold Hold	Hold	Hold Hold	1	Hold	Hold	Hold	Hole	d d	Hold	Hold	Hold	Hold	Hold	Hold	Hold Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Fill Hold	Fill										0 0
Wet 25 Wet 26		lold	Hold	Hold	Hold	1	Hold	Hold	Hold	Hol	d	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill									0 0
Wet 27		lold	Hold	Hold	Hold	ł	Hold	Hold	Hold	Hol		Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill								0 0
Wet 28 Wet 29		lold lold	Hold Hold	Hold Hold	Hold Hold	1	Hold Hold	Hold Hold	Hold Hold	Hole		Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Fill Hold	Fill						0 0
Wet 30		lold	Hold	Hold	Hold	1	Hold	Hold	Hold			Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Fill					0 0
Dry 31		read	Hold	Hold	Hold		Hold	Hold	Hold	Hol		Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Spread		Hold	Hold	Hold		Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold					3 0
Dry 32 Dry 33		Dry Dry	Spread Dry	Hold Spread	Hold Hold		Hold	Hold Hold	Hold Hold	Hole	-	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Dry Dry	Spread Dry	Hold Spread	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Dry Dry	Fill + Sprea Dry	Fill + Spread	1	3 0 3 0
Dry 34	Dry + C		Dry	Dry	Sprea	d	Hold	Hold	Hold	Hol	d	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Dry + Comp	pact Dry	Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Dry + Compa	act Dry	Dry	Fill + Spread	3 3
Dry 35 Dry 36		Spread Dry Dry Fil		: Dry Dry + Comp	Dry act Dry	2	Spread Drv	Hold Spread	Hold Hold	Hole	d d	Hold Hold	Hold	Hold Hold	Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold		Dry + Comp	act Dry Dry + Comp	Dry act Dry	Spread Dry	Hold Spread	Hold Hold	Hold Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold		Dry + Compa	ct Dry Dry + Compa	Dry ct Dry	3 3
Dry 37		Dry	Dry	Fill + Sprea		npact	Dry	Dry	Spread	Hol	d	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold				Dry + Comp		Dry		Hold	Hold	Hold	Hold	Hold	Hold	Hold				Dry + Compact	3 3
Dry 38			Dry + Compac	Dry	Fill + Spr Drv		+ Compact	Dry + Comp	Dry	Sprea		Hold Spread	Hold	Hold Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold					Dry + Com		Dry	Spread Drv	Hold	Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold					3 3
Dry 39 Dry 40		Dry		: Dry Dry + Compa					act Dry d Dry + Comj	,		Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold						Dry + Com	ipact Dry Dry + Com	,	Dry	Spread	Hold	Hold	Hold	Hold					3 3
Dry 41					Dry + Con	npact	Dry	Dry	Fill + Spre	ad Dry + Co		Dry	Dry	Spread	Hold	Hold	Hold	Hold	Hold	Hold	Hold	Hold								Dry + Comp	act Dry	Dry	Spread	Hold	Hold	Hold					3 3
Dry 42 Dry 43						Dry -	+ Compact		Dry Act Dry			+ Compact	Dry Dry + Compa	Dry t Dry	Spread Dry	Hold Spread	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold	Hold Hold									Dry + Comp	act Dry Dry + Compa	Dry ct Dry	Spread Dry	Hold Spread	Hold Hold					3 3
Dry 43 Dry 44							0	ry + compa		pact Dry				Dry + Compa		Dry	Spread	Hold	Hold	Hold	Hold	Hold											Dry + Compa		Dry	Spread					3 3
Dry 45										Dry + Co			,		d Dry + Compa		Dry	Spread	Hold	Hold	Hold	Hold												Dry + Compa		Dry					2 3
Dry 46 Dry 47											Dry	+ Compact	Dry Dry + Compa	Dry t Dry	Fill + Sprea Dry	Dry + Compa Fill + Spread	ct Dry Dry + Compa	Dry ct Dry	Spread Dry	Hold Spread	Hold Hold	Hold Hold													Dry + Compac	ct Dry Dry + Comp	act				2 3
Dry 48														Dry + Compa	ct Dry	Dry	Fill + Spread	Dry + Compa	t Dry	Dry	Spread	Hold														,	-				2 2
Dry 49 Dry 50		C:11													Dry + Compa		Dry	Fill + Spread			Dry	Spread																			2 2 0 2
Dry 50 Dry 51		Fill fold	Fill													Dry + Compa	ct Dry Dry + Compa	Dry ct Dry		Dry + Compa	act Dry Dry + Compa	Dry Act Dry																			0 2 0 2
Dry 52		lold	Hold	Fill														Dry + Compa	t			Dry + Comp	<mark>ac</mark> t																		0 2

Permanent stockpile per site

Shaft site	Total vol. of RTM (yd3)	Stockpile area (acres)	Final height of stockpile (ft)	Equivalent annual lift (in)
Twin Cities	6,982,256	449	9.6	24
Lower Roberts	5,643,021	449	7.8	24

Project Design Capacity 7,500 cfs Natural Drying Areas

Excavation Rates per tunnel drive

Tunnel lining ID	40	ft
TBM cutterhead area	1,614	ft2
TBM advance rate (ave.)	36	ft / day
TBM advance rate (peak)	72	ft / day
Daily in-situ rate of excavation per tunnel (ave.)	2,152	yd3 / day
Daily in-situ rate of excavation per tunnel (peak)	4,304	yd3 / day
Bulking factor	1.30	
Daily excavated volume per tunnel (ave.)	2,798	yd3 / day
Daily excavated volume per tunnel (peak)	5,595	yd3 / day
Estimated duration of peak excavation	21	days
Volume loss due to drying	5	%
Equivalent daily dry excavated volume per tunnel (ave.)	2,658	yd3 / day
Equivalent daily dry excavated volume per tunnel (peak.)	5,316	yd3 / day

Temporary Wet Stockpile Area per tunnel drive

No. of days storage	5	days	assuming 5 days of peak excavation in a 7 day cycle
Volume of RTM to stockpile at peak excavation rate	27,977	yd3	per stockpile
Height of stockpile	10	ft	short term
Contingency	50	%	includes allowance for conveyor pits
Area required at peak excavation rate	2.60	acres	per stockpile = 337 x 337 ft or equivalent
No. of temporary stockpiles	6.0		
Total area of temporary stockpiles	15.6	acres	

Equipment Storage / Maintenance Yard per tunnel drive

Area required for equipment storage / maintenance yard

Drying Stockpile

Contingency

5 %

1.0 acres

Natural Drying Area Summary

Alignment	Site	Tunnel Drive	Compacted RTM to store above grade	Temporary Wet Stockpile 10 ft high	Equipment / Maintenance Yard	Dry Stockpile (height varies)	Total RTM Area		Total R	otal RTM Area	
	Twin Cities	North	3.0 m yd3	15.6 acres	1 acres	196 acres	212 acres		425	acres	
Bethany	Twincities	South	3.7 m yd3	15.6 acres	1 acres	196 acres	212 acres		425	acres	
Bethany	Lower Roberts Island	North	2.8 m yd3	15.6 acres	1 acres	196 acres	213 acres		425	acres	
		South	4.3 m yd3	15.6 acres	1 acres	196 acres	213 acres		425	acres	

Project Design Capacity 7,500 cfs Natural Drying Equipment

Temporary Wet Stockpile Filling per tunnel drive

Volume of RTM to stockpile at peak excavation rate	27,977	yd3	per stockpile as for Natural Drying
Bulldozer capacity	14.50	yd3 / bulldozer	
Target time for filling temporary stockpile	5	days	
Working hours per day	20	hours	
Average cycle time per shove	5	mins	
Efficiency	80	%	
Number of bulldozers required	2	bulldozers	
Total hours at peak excavation rate per day	40.0	hours / day	
Total hours at average excavation rate per day	20.0	hours / day	
Total hours for operation per year	5,100	hours / year	

Example: Komatsu, D65EX-18 WH, Capacity = 14.5yd3 (see equipment schedule for details)

Example: Komatsu, D65EX-18 WH, Capacity = 14.5yd3 (see equipment schedule for details)

Temporary Wet Stockpile Emptying per tunnel drive

Assume two conveyor pits in the centre of the temporary stockpile each to be loaded from both sides.

Volume of RTM to stockpile at peak excavation rate	27,977	yd3	per stock
Bulldozer capacity	14.50	yd3 / bulldozer	
Target time for emptying temporary stockpile	10	days	
Working hours per day	10	hours	
Average cycle time per shove	5	mins	
Efficiency	81	%	
Number of bulldozers required	2	bulldozers	
Total hours at peak excavation rate per day	39.7	hours / day	
Total hours at average excavation rate per day	19.9	hours / day	2 stockp
Total hours for operation per year	5,062	hours / year	

per stockpile as for Natural Drying

2 stockpiles emptied at any one time

Drying Stockpile Moving per tunnel drive

Daily excavated volume per tunnel (peak)		yd3 / day	to be moved per day
Wheel Loader capacity		yd3 / wheel loader	
Working hours per day		hours	
Average cycle time		mins	
Efficiency	81		
Number of wheel loaders		wheel loaders	
Total hours at peak excavation rate per day		hours / day	
Total hours at average excavation rate per day		hours / day	
Total hours for operation per year	1,882	hours / year	

Example: Caterpillar, 990K, Capacity = 19.5yd3 (see equipment schedule for details)

Drying Area / Dry Stockpile Spreading per tunnel drive

Volume of RTM to be spread per cell (ave.)	13,989	yd3 / cell
Bulldozer capacity	14.50	yd3 / bulldozer
Working hours per week	50	hours / week / cell
Average cycle time per shove	5	mins
Efficiency	81	%
Number of bulldozers required	2	bulldozers / cell
Max. number of cells to spread in one week	3	cells
Number of bulldozers required	6	bulldozers
Total hours per cell (ave.)	99.3	hours / cell
Number of cells to spread per year	52	cells / year
Total hours for operation per year	5,161	hours / year

Example: Komatsu, D65EX-18 WH, Capacity = 14.5yd3 (see equipment schedule for details)

Drying Stockpile Compacting per tunnel drive

Roller width	84	in	
Roller width	2.33	yd	
Area per cell	6.1	acres	per site (ie. two tunnel drives)
Area per cell	29,376	yd2	
Speed	6.8	mph	
Speed	11,968	yd/hr	
Area/hr	27,925	yd2/hr	
Working hours per day	10	hours	
Efficiency	50	%	
No. of passes	2	passes	
Time to compact one cell	4.2	hrs	
Max. number of cells to compact in one week	3	cells / week	
Number of compactors required	1	compactors	
Number of cells to compact per year	52	cells / year	
Total hours for operation per year	219	hours / year	

Example: Caterpillar, CS54B, Capacity = 84in roller at 6.8mph (see equipment schedule for details)

Project Design Capacity 7,500 cfs Natural Drying Equipment Schedule

51 weeks 5100 hours

Working Hours / Year

Day shift only

Weeks / year

Total hours / year

Hours / day	10 hours
Days / week	5 days
Weeks / year	51 weeks
Total hours / year	2550 hours
Day and night shift	
Hours / day	20 hours
Days / week	5 days

Equipment Schedule	(per tunnel drive)

Operation	Equipment	Manufacturer	Model	Power	Power	Hours / Year /	Hourly Operatin	g	Capital Cost
operation	Equipment	Wandacturer	Widdei	Fower	rower	Operation	Cost		capital cost
Temporary Wet Stockpiles Filling	Bulldozers	Komatsu	D65EX-18 WH	217 hp	162 kW	5100 hrs	\$ 105	\$	\$ 196,000
Temporary Wet Stockpiles Testing									
Temporary Wet Stockpiles Emptying	Bulldozers	Komatsu	D65EX-18 WH	217 hp	162 kW	5062 hrs	\$ 105	\$	\$ 196,000
Drying Stockpile Moving	Wheel Loaders	Caterpillar	990K	699 hp	521 kW	1882 hrs	\$ 120	\$	\$ 180,000
Drying Stockpile Spreading	Bulldozers	Komatsu	D65EX-18 WH	217 hp	162 kW	5161 hrs	\$ 105	\$	\$ 196,000
Drying Stockpile Compacting	Compactor	Caterpillar	CS54B	131 hp	98 kW	219 hrs	\$ 55	\$	73,100

Av	erage Excavation R	ate		Peak E	xcava	ation Rate
Total Hours /	Total Power /	Total Annual		Quantity	Tate	al Capital Cost
Year	Year	Op	erating Cost	Quantity	1010	ai Capitai Cost
5100 hrs	825 MWh	\$	535,465	2	\$	392,000
5062 hrs	819 MWh	\$	531,499	4	\$	784,000
1882 hrs	981 MWh	\$	225,838	2	\$	360,000
5161 hrs	835 MWh	\$	541,921	6	\$	1,176,000
219 hrs	21 MWh	\$	12,034	1	\$	73,100
- hrs	- MWh	\$	-	0	\$	-
17,424 hrs	3,482 MWh	\$	1,846,758	15	\$	2,785,100
17,424 hrs	3,482 MWh	\$	1,846,758	15	\$	2,785,100

Equipment utilization 23%

Total Electrical	
Total Gas/Diesel	
Total	

-	0	\$ -
46,758	15	\$ 2,785,100
46,758	15	\$ 2,785,100

Project Design Capacity 7,500 cfs Equipment Schedule Summary

Working Hours

Day shift only

Hours / day	10 hours
Days / week	5 days
Weeks / year	51 weeks
Total hours / year	2550 hours

Day and night shift

Hours / day	20	hours
Days / week	5	days
Weeks / year	51	weeks
Total hours / year	5100	hours

Equipment Schedule

No Drying - (per tunnel drive)		
Operation	Equipment	Power
Temporary Wet Stockpiles Filling	Bulldozers	217 hp
Temporary Wet Stockpiles Testing		hp
Temporary Wet Stockpiles Emptying	Bulldozers	217 hp
Drying Stockpile Moving	Wheel Loaders	699 hp
Drying Stockpile Spreading	Bulldozers	217 hp
Drying Stockpile Compacting	Compactor	131 hp

131 lip	
Total Electrical	
Total Gas/Diesel	
Total	

-	1,002	
6	5,161 hrs	
1	219 hrs	
	-	
0	- hrs	
15	17,424 hrs	

Annual usage

Total Hours / Year

5,100 hrs

5,062 hrs

1,882 hrs

hrs

Quantity

required

2

4

2

Notes Day and night shift, 12mths/yr No activity Day shift only, 12mths/yr Day shift only, 12mths/yr Day shift only, 12mths/yr Two passes over each drying cell / yr

24 Jun 2021